Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-21T15:16:41.500Z Has data issue: false hasContentIssue false

3 - Concepts and models for interacting electrons

from Part I - Interacting electrons: beyond the independent-particle picture

Published online by Cambridge University Press:  05 June 2016

Richard M. Martin
Affiliation:
University of Illinois, Urbana-Champaign
Lucia Reining
Affiliation:
École Polytechnique, Paris
David M. Ceperley
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

The art of being wise is the art of knowing what to overlook.

William James

Summary

This chapter is devoted to idealized models and theoretical concepts that underlie the topics in the rest of this book. Among the most dramatic effects are the Wigner and Mott transitions, exemplified by electrons in a homogeneous background of positive charge and by the Hubbard model of a crystal. Fermi liquid theory is the paradigm for understanding quasi-particles and collective excitations in metals, building on a continuous link between a non-interacting and an interacting system. The Luttinger theorem and Friedel sum rule are conservation laws for quantities that do not vary at all with the interaction. The Heisenberg and Ising models exemplify the properties of localized electronic states that act as spins. The Anderson impurity model is the paradigm for understanding local moment behavior and is used directly in dynamical mean-field theory.

The previous chapters discuss examples of experimental observations where effects of interactions can be appreciated with only basic knowledge of physics and chemistry. The purpose of this chapter is to give a concise discussion of models that illustrate major characteristics of interacting electrons. These are prototypes that bring out features that occur in real problems, such as the examples in the previous chapter. They are also pedagogical examples for the theoretical methods developed later, with references to specific sections.

The Wigner transition and the homogeneous electron system

The simplest model of interacting electrons in condensed matter is the homogeneous electron system, also called homogeneous electron gas (HEG), an infinite system of electrons with a uniform compensating positive charge background. It was originally introduced as a model for alkali metals. Now the HEG is a standard model system for the development of density functionals and a widely used test system for the many-body perturbation methods in Chs. 10–15. It is also an important model for quantum Monte Carlo calculations, described in Chs. 23–25.

To define the model, we take the hamiltonian in Eq. (1.1) and replace the nuclei by a rigid uniform positive charge with density equal to the electron charge density n.

Type
Chapter
Information
Interacting Electrons
Theory and Computational Approaches
, pp. 40 - 58
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×