The writing of this book started more than a decade ago when I was first given the assignment of teaching two courses on rigid body dynamics. One of these courses featured Lagrange's equations of motion, and the other featured the Newton–Euler equations. I had long struggled to resolve these two approaches to formulating the equations of motion of mechanical systems. Luckily, at this time, one of my colleagues, Jim Casey, was examining the elegant works of Synge and his co-workers on this topic. There, he found a partial resolution to the equivalence of the Lagrangian and Newton–Euler approaches. He then went further and showed how the governing equations for a rigid body formulated by use of both approaches were equivalent. Shades of this result could be seen in an earlier work by Greenwood, but Casey's work established the equivalence in an unequivocal fashion. As is evident from this book, I subsequently adapted and expanded on Casey's treatment in my courses. My treatment of dynamics presented in this book is also heavily influenced by the texts of Papastavridis and Rosenberg. It has also benefited from my graduate studies in dynamical systems at Cornell in the late 1980s. There, under the guidance of Philip Holmes, Frank Moon, Richard Rand, and Andy Ruina, I was shown how the equations governing the motion of (often simple) mechanical systems featuring particles and rigid bodies could display surprisingly rich behavior.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.