Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T19:18:17.538Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Alain Vanderpoorten
Affiliation:
Université de Liège, Belgium
Bernard Goffinet
Affiliation:
University of Connecticut
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acebey, A., Gradstein, S. R. & Kromer, T. (2003) Species richness and habitat diversification of bryophytes in submontane rain forest and fallows of Bolivia. Journal of Tropical Ecology, 19, 9–18.CrossRefGoogle Scholar
Adams, D. G. & Duggan, P. S. (2008) Cyanobacteria–bryophyte symbioses. Journal of Experimental Botany, 59, 1047–1058.CrossRefGoogle ScholarPubMed
Ah-Peng, C. & Rausch De Traubenberg, C. R. (2004) Aquatic bryophytes as pollutant accumulators and ecophysiological bioindicators of stress: bibliographic synthesis. Cryptogamie Bryologie, 25, 205–248.Google Scholar
Alpert, P. (2000) The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecology, 151, 5–17.CrossRefGoogle Scholar
Alpert, P. (2005) The limits and frontiers of desiccation-tolerant life. Integrative and Comparative Biology, 45, 685–695.CrossRefGoogle ScholarPubMed
Alpert, P. (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare?Journal of Experimental Biology, 209, 1575–1584.CrossRefGoogle ScholarPubMed
Alpert, P. & Oechel, W. C. (1985) Carbon balance limits microdistribution of Grimmia laevigata, a desiccation-tolerant plant. Ecology, 66, 660–669.CrossRefGoogle Scholar
Alpert, P. & Oliver, M. J. (2002) Drying without dying. In Dessication and Survival in Plants: Drying Without Dying, eds. Black, M. & Pritchard, H. W.. Wallingford: CAB International, pp. 3–43.CrossRefGoogle Scholar
Andelman, S. J. & Fagan, W. F. (2000) Umbrellas and flagships: efficient conservation surrogates or expensive mistakes?Proceedings of the National Academy of Sciences of the USA, 97, 5954–5959.CrossRefGoogle ScholarPubMed
Ayres, E., Wal, R., Sommerkorn, M. & Bardgett, R. (2006) Direct uptake of soil nitrogen by mosses. Biology Letters, 2, 286–288.CrossRefGoogle ScholarPubMed
Bakken, S. (1993) Effects of simulated acid rain on the morphology, growth and chlorophyll content of Hylocomium splendens. Lindbergia, 18, 104–110.Google Scholar
Barkman, J. J. (1958) Phytosociology and Ecology of Cryptogamic Epiphytes. Assen: van Gorcum.Google Scholar
Barthlott, W., Fischer, E., Frahm, J. P. & Seine, R. (2000) First experimental evidence for zoophagy in the hepatic Colura. Plant Biology, 2, 93–97.CrossRefGoogle Scholar
Bates, J. W. (1982) The role of exchangeable calcium in saxicolous calcicole and calcifuge mosses. New Phytologist, 90, 239–252.CrossRefGoogle Scholar
Bates, J. W. (1988) The effect of shoot spacing on the growth and branch development of the moss Rhytidiadelphus triquetrus. New Phytologist, 109, 499–504.CrossRefGoogle Scholar
Bates, J. W. (1989) Growth of Leucobryum glaucum cushions in a Berkshire oakwood. Journal of Bryology, 15, 785–791.CrossRefGoogle Scholar
Bates, J. W. (1992) Influence of chemical and physical factors on Quercus and Fraxinus epiphytes at Loch Sunart, western Scotland: a multivariate analysis. Journal of Ecology, 80, 163–179.CrossRefGoogle Scholar
Bates, J. W. (1995) A bryophyte flora of Berkshire. Journal of Bryology, 18, 503–620.CrossRefGoogle Scholar
Bates, J. W. (1997) Effects of intermittent desiccation on nutrient economy and growth of two ecologically contrasted mosses. Annals of Botany, 79, 299–309.CrossRefGoogle Scholar
Bates, J. W. (1998) Is ‘life-form’ a useful concept in bryophyte ecology?Oikos, 82, 223–237.CrossRefGoogle Scholar
Bates, J. W. (2000) Mineral nutrition, substratum ecology, and pollution. In Bryophyte Biology, 1st edn, eds. Shaw, A. J. & Goffinet, B.. Cambridge: Cambridge University Press, pp. 248–311.CrossRefGoogle Scholar
Bates, J. W. (2009) Mineral nutrition and substratum ecology. In Bryophyte Biology, 2nd edn, eds. Goffinet, B. & Shaw, A. J.. Cambridge: Cambridge University Press, pp. 299–356.Google Scholar
Bates, J. W. & Duckett, J. G. (2000) On the occurrence of rhizoids in Scleropodium purum. Journal of Bryology, 22, 300–302.CrossRefGoogle Scholar
Bates, J. W. & Farmer, A. M. (1990) An experimental study of calcium acquisition and its effects on the calcifuge moss Pleurozium schreberi. Annals of Botany, 65, 87–96.CrossRefGoogle Scholar
Bates, J. W., Proctor, M. C. F., Preston, C. D., Hodgetts, N. G. & Perry, A. R. (1997) Occurrence of epiphytic bryophytes in a ‘tetrad’ transect across southern Britain. 1. Geographical trends in abundance and evidence of recent change. Journal of Bryology, 19, 685–714.CrossRefGoogle Scholar
Bates, J. W., Thompson, K. & Grime, J. P. (2005) Effects of simulated long-term climatic change on the bryophytes of a limestone grassland community. Global Change Biology, 11, 757–769.CrossRefGoogle Scholar
Beaugelin-Seiller, K., Baudin, J. P. & Brotter, D. (1994) Use of aquatic mosses for monitoring artificial radionuclides downstream of the nuclear power plant of Bugey (river Rhone, France). Journal of Environmental Radioactivity, 24, 217–233.CrossRefGoogle Scholar
Beckett, R. P., Marschall, M. & Laufer, Z. (2005) Hardening enhances photoprotection in the moss Atrichum androgynum during rehydration by increasing fast- rather than slow-relaxing quenching. Journal of Bryology, 27, 7–12.CrossRefGoogle Scholar
Benscoter, B. W. & Vitt, D. H. (2007) Evaluating feathermoss growth: a challenge to traditional methods and implications for the boreal carbon budget. Journal of Ecology, 95, 151–158.CrossRefGoogle Scholar
Berbee, M. L. & Taylor, J. W. (2007) Rhynie chert: a window into a lost world of complex plant-fungus interactions. New Phytologist, 174, 475–479.CrossRefGoogle ScholarPubMed
Berendse, F. (1999) Implications of increased litter production for plant biodiversity. Trends in Ecology and Evolution, 14, 4–5.CrossRefGoogle ScholarPubMed
Berendse, F., Breemen, N., Rydin, H., et al. (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biology, 7, 591–598.CrossRefGoogle Scholar
Berg, A., Gärdenfors, U., Hallingbäck, T. & Noren, M. (2002) Habitat preferences of red-listed fungi and bryophytes in woodland key habitats in southern Sweden: analyses of data from a national survey. Biodiversity and Conservation, 11, 1479–1503.CrossRefGoogle Scholar
Bergamini, A. & Pauli, D. (2001) Effects of increased nutrient supply on bryophytes in montane calcareous fens. Journal of Bryology, 23, 331–339.CrossRefGoogle Scholar
Bergamini, A., Pauli, D., Peintinger, M. & Schmid, B. (2001a) Relationships between productivity, number of shoots and number of species in bryophytes and vascular plants. Journal of Ecology, 89, 920–929.CrossRefGoogle Scholar
Bergamini, A., Peintiger, M., Schmid, B. & Urmi, E. (2001b) Effects of management and altitude on bryophyte species diversity and composition in montane calcareous fens. Flora, 196, 180–193.CrossRefGoogle Scholar
Berglund, H. & Jonsson, B. G. (2001) Predictability of plant and fungal species richness of old-growth boreal forest islands. Journal of Vegetation Science, 12, 857–866.CrossRefGoogle Scholar
Bidartondo, M. I., Bruns, T. D., Weiß, M., Sérgio, C. & Read, D. J. (2003) Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proceedings of the Royal Society of London B, 270, 835–842.CrossRefGoogle ScholarPubMed
Biermann, R. & Daniels, F. J. A. (1997) Changes in a lichen-rich dry sand grassland vegetation with special reference to lichen synusiae and Campylopus introflexus. Phytocoenologia, 27, 257–273.CrossRefGoogle Scholar
Billings, W. D. & Drew, W. B. (1938) Bark factors affecting the distribution of corticolous bryophytic communities. American Midland Naturalist, 20, 302–330.CrossRefGoogle Scholar
Bisang, I. (1992) Hornworts in Switzerland: endangered?Biological Conservation, 59, 145–149.CrossRefGoogle Scholar
Bisang, I. (1996) Quantitative analysis of the diaspore bank of bryophytes and ferns in cultivated fields in Switzerland. Lindbergia, 21, 9–20.Google Scholar
Bisang, I. (1998) The occurrence of hornwort populations (Anthocerotales, Anthoceropisa) in the Swiss Plateau: the role of management, weather conditions and soil characteristics. Lindbergia, 23, 94–104.Google Scholar
Bisang, I. & Ehrlen, J. (2002) Reproductive effort and cost of reproduction in female Dicranum polysetum. Bryologist, 105, 384–397.CrossRefGoogle Scholar
Bobbink, R., Hornung, M. & Roelofs, J. G. M. (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717–738.CrossRefGoogle Scholar
Boisselier-Dubayle, M.-C., Lambourdière, J. & Bischler, H. (2002) Molecular phylogenies support multiple morphological reductions in the liverwort subclass Marchantiidae (Bryophyta). Molecular Phylogenetics and Evolution, 24, 66–77.CrossRefGoogle Scholar
Boudier, P. (1988) Différenciation structurale de l'épiderme du sporogone chez Sphagnum fimbriatum Wilson. Annales des Sciences Naturelles, Botanique, 8, 143–156.Google Scholar
Boudreault, C., Gauthier, S. & Bergeron, Y. (2000) Epiphytic lichens and bryophytes on Populus tremuloides along a chronosequence in the southwestern boreal forest of Quebec, Canada. Bryologist, 103, 725–738.CrossRefGoogle Scholar
Bragazza, L., Siffi, C., Iacumin, P. & Gerdol, R. (2007) Mass loss and nutrient release during litter decay in peatland: the role of microbial adaptability to litter chemistry. Soil Biology & Biochemistry, 39, 257–267.CrossRefGoogle Scholar
Brown, D. H. & Wells, J. M. (1990) Physiological effects of heavy metals on the moss Rhytidiadelphus squarrosus. Annals of Botany, 66, 641–647.CrossRefGoogle Scholar
Brown, D. H. & Whitehead, A. (1986) The effect of mercury on the physiology of Rhytidiadelphus squarrosus (Hedw.) Warnst. Journal of Bryology, 14, 367–374.CrossRefGoogle Scholar
Brundrett, M. C. (2002) Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154, 275–304.CrossRefGoogle Scholar
Budke, J. M., Jones, C. S. & Goffinet, B. (2007) Development of the enigmatic peristome of Timmia megapolitana (Timmiaceae; Bryophyta). American Journal of Botany, 94, 460–467.CrossRefGoogle Scholar
Buitink, J. & Leprince, O. (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology, 48, 215–228.CrossRefGoogle ScholarPubMed
Burch, J. (2003) Some mosses survive cryopreservation without prior pretreatment. Bryologist, 106, 270–277.CrossRefGoogle Scholar
Büscher, P., Koedam, N. & Speybroeck, D. (1990) Cation-exchange properties and adaptation to soil acidity in bryophytes. New Phytologist, 115, 177–186.CrossRefGoogle Scholar
Cairney, J. W. G. (2000) Evolution of mycorrhiza systems. Naturwissenschaften, 87, 467–475.CrossRefGoogle ScholarPubMed
Campbell, D. R., Rochefort, L. & Lavoie, C. (2003) Determining the immigration potential of plants colonizing disturbed environments: the case of milled peatlands in Quebec. Journal of Applied Ecology, 40, 78–91.CrossRefGoogle Scholar
Carafa, A., Duckett, J. G. & Ligrone, R. (2003) Subterranean gametophytic axes in the primitive liverwort Haplomitrium harbour a unique type of endophytic association with aseptate fungi. New Phytologist, 160, 185–197.CrossRefGoogle Scholar
Carafa, A., Duckett, J. G., Know, J. P. & Ligrone, R. (2005) Distribution of cell wall xylans in bryophytes and tracheophytes: new insights into the basal interrelationships of land plants. New Phytologist, 168, 231–240.CrossRefGoogle ScholarPubMed
Carballeira, A., Diaz, S., Vazquez, M. D. & Lopez, J. (1998) Inertia and resilience in the responses of the aquatic bryophyte Fontinalis antipyretica Hedw. to thermal stress. Archives of Environmental Contamination and Toxicology, 34, 343–349.CrossRefGoogle ScholarPubMed
Carballeira, A., Fernandez, J. A., Aboal, J. R., Real, C. & Couto, J. A. (2006) Moss: a powerful tool for dioxin monitoring. Atmospheric Environment, 40, 5776–5786.CrossRefGoogle Scholar
Caron, J. (2001) La tourbe et les milieux artificiels. In Ecologie des Tourbières du Québec-Labrador, eds. Payette, S. & Rochefort, L.. Québec: Presses de l'Université Laval, pp. 399–410.Google Scholar
Chapman, S., Buttler, A., Francez, A. J., et al. (2003) Exploitation of northern peatlands and biodiversity maintenance: a conflict between economy and ecology. Frontiers in Ecology and Environment, 1, 525–532.CrossRefGoogle Scholar
Churchill, S. P. (1998) Catalog of Amazonian mosses. Journal of the Hattori Botanical Laboratory, 85, 191–238.Google Scholar
Churchill, S. P., Griffin, D. & Lewis, M. (1995) Moss diversity of the Tropical Andes. In Biodiversity and Conservation of Neotropical Forests, eds. Churchill, S. P., Balslev, H., Forero, E. & Luteyn, J. L.. New York: New York Botanical Garden, pp. 335–346.Google Scholar
Clark, K. L., Nadkarni, N. M. & Gholz, H. L. (1998) Growth, net production, litter decomposition, and net nitrogen accumulation by epiphytic bryophytes in a tropical montane forest. Biotropica, 30, 12–23.CrossRefGoogle Scholar
Cleavitt, N. (2005) Patterns, hypotheses and processes in the biology of rare bryophytes. Bryologist, 108, 554–566.CrossRefGoogle Scholar
Cobb, A. R., Nadkarni, N. M., Ramsey, G. A. & Svoboda, A. J. (2001) Recolonization of bigleaf maple branches by epiphytic bryophytes following experimental disturbance. Canadian Journal of Botany, 79, 1–8.CrossRefGoogle Scholar
Convey, P. & Lewis-Smith, R. I. (2006) Geothermal bryophyte habitats in the South Sandwich Islands, maritime Antarctic. Journal of Vegetation Science, 17, 529–538.CrossRefGoogle Scholar
Crandall-Stotler, B., Stotler, R. E. & Long, D. G. (2009) Morphology and classification of the Marchantiophyta. In Bryophyte Biology, 2nd edn, eds. Goffinet, B. & Shaw, A. J.. Cambridge: Cambridge University Press, pp. 1–54.Google Scholar
Cronberg, N., Molau, U. & Sonesson, M. (1997) Genetic variation in the clonal bryophyte Hylocomium splendens at hierarchical geographical scales in Scandinavia. Heredity, 78, 293–301.CrossRefGoogle Scholar
Cronberg, N., Natcheva, R. & Hedlund, K. (2006a) Microarthropods mediate sperm transfer in mosses. Science, 313, 1255.CrossRefGoogle ScholarPubMed
Cronberg, N., Rydgren, K. & Økland, R. H. (2006b) Clonal structure and genet-level sex ratios suggest different roles of vegetative and sexual reproduction in the clonal moss Hylocomium splendens. Ecography, 29, 95–103.CrossRefGoogle Scholar
Crum, H. A. (1972) The geographic origins of the mosses of North America's eastern deciduous forest. Journal of the Hattori Botanical Laboratory, 35, 269–298.Google Scholar
Crum, H. A. (2001) Structural Diversity of Bryophytes. Ann Arbor: University of Michigan.Google Scholar
Crum, H. A. & Anderson, L. E. (1981) Mosses of Eastern North America. New York: Columbia University Press.Google Scholar
Davey, M. L. & Currah, R. S. (2006) Interactions between mosses (Bryophyta) and fungi. Canadian Journal of Botany, 84, 1509–1519.CrossRefGoogle Scholar
Davison, G. W. H. (1976) Role of birds in moss dispersal. British Birds, 69, 65–66.Google Scholar
Luca, T. H., Zackrisson, O., Nilsson, M. C. & Sellstedt, A. (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature, 419, 917–920.Google Scholar
DeLucia, E. H., Turnbull, M. H., Walcroft, A. S., et al. (2003) The contribution of bryophytes to the carbon exchange for a temperate rainforest. Global Change Biology, 9, 1158–1170.CrossRefGoogle Scholar
Queiroz, A. (2005) The resurrection of oceanic dispersal in historical biogeography. Trends in Ecology and Evolution, 20, 68–73.CrossRefGoogle ScholarPubMed
Drehwald, U. (2005) Biomonitoring of disturbance in Neotropical rainforests using bryophytes as indicators. Journal of the Hattori Botanical Laboratory, 97, 117–126.Google Scholar
Duckett, J. G. & Ligrone, R. (1992) A survey of diaspore liberation mechanisms and germination patterns in mosses. Journal of Bryology, 17, 335–354.CrossRefGoogle Scholar
Duckett, J. G. & Read, D. J. (1991) The use of the fluorescent dye, 3,3′-dihexycarbocyanine iodide, for selective staining of ascomycete fungi associated with liverwort rhizoids and ericoid roots. New Phytologist, 118, 259–272.CrossRefGoogle Scholar
Duckett, J. G. & Renzaglia, K. S. (1993) The reproductive biology of the liverwort Blasia pusilla L. Journal of Bryology, 17, 541–552.CrossRefGoogle Scholar
Duckett, J. G., Prasad, A. K. S. K., Davies, D. A. & Walker, S. (1977) A cytological analysis of the Nostoc-bryophyte relationship. New Phytologist, 79, 349–362.CrossRefGoogle Scholar
Duckett, J. G., Ligrone, R., Andrews, N. & Renzaglia, K. S. (2000) The enigma of pegged and swollen rhizoids in marchantialean hepatics: a functional explanation. American Journal of Botany, 87S, 6–7.Google Scholar
Duckett, J. G., Burch, J., Fletcher, P. W., et al. (2004) In vitro cultivation of bryophytes: a review of practicalities, problems, progress and promise. Journal of Bryology, 26, 3–20.Google Scholar
Duckett, J. G., Russell, J. & Ligrone, R. (2006a) Basidiomycetous endophytes in jungermannialean (leafy) liverworts have novel cytology and species-specific host ranges: a cytological and experimental study. Canadian Journal of Botany, 84, 1075–1093.CrossRefGoogle Scholar
Duckett, J. G., Carafa, A. & Ligrone, R. (2006b) A highly differentiated glomeromycotean association with the mucilage-secreting, primitive antipodean liverwort Treubia (Treubiaceae): clues to the origins of mycorrhizas. American Journal of Botany, 93, 797–813.CrossRefGoogle ScholarPubMed
Duckett, J. G., Pressel, S. & Ligrone, R. (2006c) Cornish bryophytes in the Atlantic Arc: cell biology, culturing, conservation and climate change. In Botanical Links in the Atlantic Arc, eds. Leach, S. J., Page, C. N., Peytoureau, Y. & Sanford, M. N., English Nature and the Botanical Society of the British Isles, Conference Report 24, pp. 165–177.Google Scholar
Duff, R. J., Villareal, J. C., Cargill, D. C. & Renzaglia, K. (2007) Progress and challenges towards developing a phylogeny and classification of hornworts. Bryologist, 110, 214–243.CrossRefGoogle Scholar
During, H. J. (1979) Life strategies of bryophytes: a preliminary review. Lindbergia, 5, 2–17.Google Scholar
During, H. J. (1990) The bryophytes of calcareous grasslands. In Calcareous Grasslands: Ecology and Management, eds. Hillier, S. H., Walton, D. W. H. & Wells, D. A., Bluntisham: Huntingdon, pp. 35–40.Google Scholar
During, H. J. (1992) Ecological classification of bryophytes and lichens. In Bryophytes and Lichens in Changing Environment, eds. Bates, J. W. & Farmer, A. M.. Oxford: Clarendon Press, pp. 1–31.Google Scholar
During, H. J. (1997) Bryophyte diaspore banks. Advances in Bryology, 6, 103–134.Google Scholar
During, H. J. & Horst, B. (1983) The diaspore bank of bryophytes and ferns in chalk grasslands. Lindbergia, 9, 57–64.Google Scholar
Edwards, D. (2000) The role of Mid-Paleaozoic mesofossils in the detection of early bryophytes. Philosophical Transactions of the Royal Society of London B, 355, 733–755.CrossRefGoogle ScholarPubMed
Edwards, D., Duckett, J. G. & Richardson, J. B. (1995) Hepatic characters in the earliest land plants. Nature, 374, 635–636.CrossRefGoogle Scholar
Edwards, D., Kerp, D. H. & Hass, H. (1998) Stomata in early land plants: an anatomical and ecophysiological approach. Journal of Experimental Botany, 49, 255–278.CrossRefGoogle Scholar
Edwards, D., Axe, L. & Duckett, J. G. (2003) Diversity in conducting cells in early land plants and comparisons with extant bryophytes. Botanical Journal of the Linnean Society, 141, 297–347.CrossRefGoogle Scholar
Eldridge, D. J. (1998) Trampling of microphytic crusts on calcareous soils, and its impact on erosion under rain-impacted flow. Catena, 33, 221–239.CrossRefGoogle Scholar
Ellis, C. J. & Tallis, J. H. (2000) Climatic control of blanket mire development at Kentra Moss, north-west Scotland. Journal of Ecology, 88, 869–889.CrossRefGoogle Scholar
Ellis, C. J. & Tallis, J. H. (2003) Ecology of Racomitrium lanuginosum in British blanket mire: evidence from the paleoecological record. Journal of Bryology, 25, 7–15.CrossRefGoogle Scholar
Equihua, M. & Usher, M. B. (1993) Impact of carpets of the invasive moss Campylopus introflexus on Calluna vulgaris regeneration. Journal of Ecology, 81, 359–365.CrossRefGoogle Scholar
Eskelinen, A. & Oksanen, J. (2006) Changes in the abundance, composition and species richness of mountain vegetation in relation to summer grazing by reindeer. Journal of Vegetation Science, 17, 245–254.CrossRefGoogle Scholar
Fenton, N., Lecomte, N., Légaré, S. & Bergeron, Y. (2005) Paludification in black spruce (Picea mariana) forests of eastern Canada: potential factors and management implications. Forest Ecology and Management, 213, 151–159.CrossRefGoogle Scholar
Ferguson, N. P. & Lee, J. A. (1980) Some effects of bisulphite and sulphate on the growth of Sphagnum species in the field. Environmental Pollution, 21, 59–71.CrossRefGoogle Scholar
Ferguson, N. P., Lee, J. A. & Bell, J. N. B. (1978) Effects of sulphur pollutants on the growth of Sphagnum species. Environmental Pollution, 16, 151–162.CrossRefGoogle Scholar
Floyd, S. K. & Bowman, J. L. (2007) The ancestral developmental tool kit of land plants. International Journal of Plant Sciences, 168, 1–35.CrossRefGoogle Scholar
Forrest, L. L., Davis, E. D., Long, D. G., et al. (2006) Unravelling the evolutionary history of the liverworts (Marchantiophyta): multiple taxa, genomes, and analyses. Bryologist, 109, 303–334.CrossRefGoogle Scholar
Frahm, J. P. (2000) New and interesting mosses from Baltic and Saxon amber. Lindbergia, 25, 33–39.Google Scholar
Frahm, J. P. (2004a) A new contribution to the moss flora of Baltic and Saxon amber. Review of Paleobotany and Palynology, 129, 81–101.CrossRefGoogle Scholar
Frahm, J. P. (2004b) Recent developments of commercial products from bryophytes. Bryologist, 107, 277–283.CrossRefGoogle Scholar
Frahm, J. P. & Klaus, D. (2001) Bryophytes as indicators of recent climate fluctuations in Central Europe. Lindbergia, 26, 97–104.Google Scholar
Frahm, J. P. & Newton, A. E. (2005) A new contribution to the moss flora of Dominican amber. Bryologist, 108, 526–536.CrossRefGoogle Scholar
Frahm, J. P. & Vitt, D. H. (1993) Comparisons between the moss floras of North America and Europe. Nova Hedwigia, 56, 307–333.Google Scholar
Frego, K. A. & Carleton, T. J. (1995a) Microsite conditions and spatial pattern in a boreal bryophyte community. Canadian Journal of Botany, 73, 544–551.CrossRefGoogle Scholar
Frego, K. A. & Carleton, T. J. (1995b) Microsite tolerance of four bryophytes in a mature black spruce stand: reciprocal transplants. Bryologist, 98, 452–458.CrossRefGoogle Scholar
Frey, W., Hofmann, M. & Hilger, H. H. (2001) The gametophyte–sporophyte junction: unequivocal hints for two evolutionary lines of archegoniate land plants. Flora, 196, 431–445.CrossRefGoogle Scholar
Furness, S. B. & Grime, J. P. (1982a) Growth rate and temperature responses in bryophytes. I. An investigation of Brachythecium rutabulum. Journal of Ecology, 70, 513–523.CrossRefGoogle Scholar
Furness, S. B. & Grime, J. P. (1982b) Growth rate and temperature responses in bryophytes. II. A comparative study of species of contrasted ecology. Journal of Ecology, 70, 525–536.CrossRefGoogle Scholar
Gabriel, R. & Bates, J. W. (2003) Responses of photosynthesis to irradiance in bryophytes of the Azores laurel forest. Journal of Bryology, 25, 101–106.CrossRefGoogle Scholar
Garbary, D. J. & Renzaglia, K. S. (1998) Bryophyte phylogeny and the evolution of land plants: evidence from development and ultrastructure. In Bryology for the Twenty-first Century, eds. Bates, J. W., Ashton, N. W. & Duckett, J. G.. Leeds: Maney and British Bryological Society, pp. 45–63.Google Scholar
Garbary, D. J., Renzaglia, K. S. & Duckett, J. G. (1993) The phylogeny of land plants: a cladistic analysis based on male gametogenesis. Plant Systematics and Evolution, 188, 237–269.CrossRefGoogle Scholar
Garbary, D. J., Miller, A. G., Scrosati, R., Kim, K. Y. & Schofield, W. B. (2008) Distribution and salinity tolerance of intertidal mosses from Nova Scotian salt marshes. Bryologist, 111, 282–291.CrossRefGoogle Scholar
Gärdenfors, U. (2000) Population viability analysis in the classification of threatened species: problems and potentials. Ecological Bulletins, 48, 181–190.Google Scholar
Garner, D. B. & Paolillo, D. J. (1973) On the functioning of stomata in Funaria. Bryologist, 76, 423–427.CrossRefGoogle Scholar
Gignac, L. D., Nicholson, B. J. & Bayley, S. E. (1998) The utilization of bryophytes in bioclimatic modelling: predicted northward migration of peatlands in the Mackenzie river basin, Canada, as a result of global warming. Bryologist, 101, 572–587.CrossRefGoogle Scholar
Gignac, L. D., Halsey, L. A. & Vitt, D. H. (2000) A bioclimatic model for the distribution of Sphagnum-dominated peatlands in North America under present climatic conditions. Journal of Biogeography, 27, 1139–1151.CrossRefGoogle Scholar
Glime, J. M. (1982) Response of Fontinalis hypnoides to seasonal temperature variations. Journal of the Hattori Botanical Laboratory, 53, 181–193.Google Scholar
Glime, J. M. (2007a) Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Available online at http://www.bryoecol.mtu.edu/.
Glime, J. M. (2007b) Economic and ethnic uses of bryophytes. In Flora of North America North of Mexico, Vol. 27. Bryophyta, part 1, ed. Flora of North America Editorial Committee, New York: Oxford University Press, pp. 14–41.Google Scholar
Glime, J. M. & Vitt, D. H. (1984) The physiological adaptations of aquatic musci. Lindbergia, 10, 41–52.Google Scholar
Goebel, K. (1887) [1888]. Morphologische und biologische Studien. I. Über epiphytische Farne und Musciineen. Annales du Jardin Botanique de Buitenzorg, 7, 1–73.Google Scholar
Goffinet, B. (2000) Origin and phylogenetic relationships of bryophytes. In Bryophyte Biology, 1st edn, eds. Shaw, A. J. & Goffinet, B., Cambridge: Cambridge University Press, pp. 124–149.CrossRefGoogle Scholar
Goffinet, B. & Cox, C. J. (2000) Phylogenetic relationships among basal-most arthrodontous mosses with special emphasis on the evolutionary significance of the Funariineae. Bryologist, 103, 212–223.CrossRefGoogle Scholar
Goffinet, B., Shaw, A. J. & Cox, C. J. (2004) Phylogenetic inferences in the dung-moss family Splachnaceae from analyses of cpDNA sequence data and implications for the evolution of entomophily. American Journal of Botany, 91, 748–759.CrossRefGoogle ScholarPubMed
Goffinet, B., Buck, W. R. & Wall, M. A. (2007) Orthotrichum freyanum (Orthotrichaceae, Bryophyta), a new epiphytic species from Chile. Nova Hedwigia, Beiheft, 131, 1–11.Google Scholar
Goffinet, B., Buck, W. R. & Shaw, A. J. (2009) Morphology and classification of the Bryophyta. In Bryophyte Biology, 2nd edn, eds. Goffinet, B. & Shaw, A. J.. Cambridge: Cambridge University Press, pp. 55–138.Google Scholar
Goffinet, B. & Shaw, A. J. (eds.) (2009) Bryophyte Biology, 2nd edn, Cambridge: Cambridge University Press.
González-Mancebo, J. M., Losada-Lima, A. & McAlister, S. (2003) Host specificity of epiphytic bryophyte communities of a laurel forest on Tenerife (Canary Islands, Spain). Bryologist, 106, 383–394.CrossRefGoogle Scholar
González-Mancebo, J. M., Romaguera, F., Losada-Lima, A. & Suarez, A. (2004) Epiphytic bryophytes growing on Laurus azorica (Seub.) Franco in three laurel forest areas in Tenerife (Canary Islands). Acta Oecologica, 25, 159–167.CrossRefGoogle Scholar
Grace, M. (1995) A key to the growth forms of mosses and liverworts and guide to their educational value. Journal of Biological Education, 29, 272–278.CrossRefGoogle Scholar
Gradstein, S. R. (1990) Morphology and classification of the Hepaticae: an introduction. In Chemistry and Chemical Taxonomy of Bryophytes, eds. Zinsmeister, H. D. & Mues, R.. Oxford: Oxford University Press, pp. 3–17.Google Scholar
Gradstein, S. R. (1992a) The vanishing Tropical Rain Forest as an environment for bryophytes and lichens. In Bryophytes and Lichens in a Changing Environment, eds. Bates, J. W. & Farmer, A. M.. Oxford: Oxford University Press, pp. 232–256.Google Scholar
Gradstein, S. R. (1992b) Threatened bryophytes of the neotropical rain forest: a status report. Tropical Bryology, 6, 83–93.Google Scholar
Gradstein, S. R. (1993) New fossil hepaticae preserved in amber of the Dominican Republic. Nova Hedwigia, 57, 353–374.Google Scholar
Gradstein, S. R. (1995) Diversity of Hepaticae and Anthocerotae in montane forests of the tropical Andes. In Biodiversity and Conservation of Neotropical Montane Forests, eds. Churchill, S. P., Balslev, H., Forero, E. & Luteyn, J. L.. New York: New York Botanical Garden, pp. 321–334.Google Scholar
Gradstein, S. R. & Weber, W. A. (1982) Bryogeography of the Galapagos Islands. Journal of the Hattori Botanical Laboratory, 52, 127–152.Google Scholar
Gradstein, S. R. & Wilson, R. (2008) Protonemal neoteny in bryophytes. In Bryology in the New Millenium, eds. Mohamed, H., Bakar, B. H., Boyce, A. N. & Lee, P. N.. Kuala Lumpur, pp. 1–12.Google Scholar
Gradstein, S. R., Klein, R., Kraut, L., et al. (1992) Phytochemical and morphological support for the existence of two species in Monoclea (Hepaticae). Plant Systematics and Evolution, 180, 115–135.CrossRefGoogle Scholar
Gradstein, S. R., Churchill, S. P. & Salazar-Allen, N. (2001) Guide to the Bryophytes of Tropical America. New York: New York Botanical Garden.Google Scholar
Gradstein, S. R., Reiner-Drehwald, M. E. & Muth, H. (2003) Über die Identität der neuen Aquarienpflanze Pellia endiviifolia. Aqua Planta, 3, 88–95.Google Scholar
Graham, L. E. & Wilcox, L. W. (2000) The origin of alternation of generations in land plants: a focus on matrotrophy and hexose transport. Philosophical Transactions of the Royal Society of London B, 355, 757–767.CrossRefGoogle ScholarPubMed
Graham, L. E., Cook, M. E. & Busse, J. S. (2000) The origin of plants: Body plan changes contributing to a major evolutionary radiation. Proceedings of the National Academy of Sciences of the USA, 97, 4535–4540.CrossRefGoogle ScholarPubMed
Graham, L. E., Wilcox, L. W.Cook, M. E. & Gensel, P. G. (2004) Resistant tissues of modern marchantioid liverworts resemble enigmatic Early Paleaozoic microfossils. Proceedings of the National Academy of Sciences of the USA, 101, 11025–11029.CrossRefGoogle ScholarPubMed
Graham, L. E., Kodner, R. B., Fisher, M. M., et al. (2006) Early land plant adaptations to terrestrial stress: a focus on phenolics. In The Evolution of Plant Physiology, eds. Hemsely, A. R. & Poole, I.. Amsterdam: Elsevier, pp. 155–169.Google Scholar
Grau, O., Grytnes, J.-A. & Birks, H. J. B. (2007) A comparison of altitudinal species richness of bryophytes with other plant groups in Nepal, Central Himalaya. Journal of Biogeography, 34, 1907–1915.CrossRefGoogle Scholar
Groeneveld, E. V. G. & Rochefort, L. (2005) Polytrichum strictum as a solution to frost heaving in disturbed ecosystems: a case study with milled peatlands. Restoration Ecology, 13, 74–82.CrossRefGoogle Scholar
Grundmann, M., Ansell, S. W., Russell, S. J., Koch, M. A. & Vogel, J. C. (2007) Genetic structure of the widespread and common Mediterranean bryophyte Pleurochaete squarrosa (Brid.) Lindb. (Pottiaceae): evidence from nuclear and plastidic DNA sequence variation and allozymes. Molecular Ecology, 16, 709–722.CrossRefGoogle ScholarPubMed
Gunnarsson, U. & Söderström, L. (2007) Can artificial introduction of diaspore fragments work as a conservation tool for maintaining populations of the rare peatmoss Sphagnum angermanicum?Biological Conservation, 135, 450–458.CrossRefGoogle Scholar
Gunnarsson, U., Rydin, H. & Sjörs, H. (2000) Diversity and pH changes after 50 years on the boreal mire Skattlösbergs Stormosse, Central Sweden. Journal of Vegetation Science, 11, 277–286.CrossRefGoogle Scholar
Gunnarsson, U., Hassel, K. & Söderström, L. (2005) Genetic structure of the endangered peatmoss Sphagnum angermanicum in Sweden: a result of historic or contemporary processes?Bryologist, 108, 194–202.CrossRefGoogle Scholar
Hallingbäck, T. (2003) Including bryophytes in international conventions: a success story from Europe. Journal of the Hattori Botanical Laboratory, 9, 201–214.Google Scholar
Hallingbäck, T. & Hodgetts, N. (2000) Mosses, Liverworts, and Hornworts. Status Survey and Conservation Action Plan for Bryophytes. Gland: IUCN.Google Scholar
Hanski, I. (1999) Metapopulation Ecology. Oxford: Oxford University Press.Google Scholar
Harmens, H., Buse, A., Büker, P., et al. (2004) Heavy metal concentrations in European mosses: 2000/2001 survey. Journal of Atmospheric Chemistry, 49, 425–436.CrossRefGoogle Scholar
Harvey-Gibson, R. J. & Miller-Brown, D. (1927) Fertilization of bryophyta. Annals of Botany, 41, 190–191.Google Scholar
Hasegawa, J. (1988) A proposal for a new system of the Anthocerotae, with a revision of the genera. Journal of the Hattori Botanical Laboratory, 64, 87–95.Google Scholar
Hassel, K. & Söderström, L. (2005) The expansion of the alien mosses Orthodontium lineare and Campylopus introflexus in Britain and continental Europe. Journal of the Hattori Botanical Laboratory, 97, 183–193.Google Scholar
Hassel, K., Pedersen, B. & Söderström, L. (2005) Changes in life-history traits in an expanding moss species: phenotypic plasticity or genetic differentiation? A reciprocal transplantation experiments with Pogonatum dentatum. Ecography, 28, 71–80.CrossRefGoogle Scholar
Hébant, C. (1977) The conducting tissues of bryophytes. Bryophytorum Bibliotheca, 10, 1–157.Google Scholar
Heber, U., Bukhov, N. G., Shuvalov, V., Kobayashi, Y. & Loange, O. L. (2001) Protection of the photosynthetic apparatus against damage by excessive illumination in homoiohydric leaves and poikylohydric mosses and lichens. Journal of Experimental Botany, 52, 1999–2006.CrossRefGoogle ScholarPubMed
Heckman, D. S., Geiser, D. M., Eidell, B. R., et al. (2001) Molecular evidence for the early colonization of land by fungi and plants. Science, 293, 1129–1133.CrossRefGoogle ScholarPubMed
Hedenäs, L. (2001) The importance of phylogeny and habitat factors in explaining gametophytic character states in European Amblystegiaceae. Journal of Bryology, 23, 205–219.CrossRefGoogle Scholar
Hedderson, T. A. & Nowell, T. L. (2006) Phylogeography of Homalothecium sericeum (Hedw.) Br. Eur.: toward a reconstruction of glacial survival and postglacial migration. Journal of Bryology, 28, 283–292.CrossRefGoogle Scholar
Hedges, S. B., Blair, J. E., Venturi, M. L. & Shoe, J. L. (2004) A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evolutionary Biology, 4, article 2.CrossRefGoogle ScholarPubMed
Heegaard, E. (1997) Ecology of Andreaea in western Norway. Journal of Bryology, 19, 527–636.CrossRefGoogle Scholar
Heilmann-Clausen, J., Aude, E. & Christensen, M. (2005) Cryptogam communities on decaying deciduous wood: does tree species diversity matter?Biodiversity and Conservation, 14, 2061–2078.CrossRefGoogle Scholar
Heinken, T., Lees, R., Raudnitschka, D. & Runge, S. (2001) Epizoochorous dispersal of bryophyte stem fragments by roe deer (Capreolus capreolus) and wild boar (Sus scrofa). Journal of Bryology, 23, 293–300.CrossRefGoogle Scholar
Heinrichs, J., Gradstein, S. R., Wilson, R. & Schneider, H. (2005) Towards a natural classification of liverworts (Marchantiophyta) based on the chloroplast gene rbcL. Cryptogamie. Bryologie, 26, 131–150.Google Scholar
Heinrichs, J., Hentschel, J., Wilson, R., Feldberg, K. & Schneider, H. (2007) Evolution of leafy liverworts (Jungermannidae, Marchantiophyta): estimating divergence times from chloroplast DNA sequences using penalized likelihood with integrated fossil evidence. Taxon, 56, 31–44.Google Scholar
He-Nygrén, X., Juslén, A., Ahonen, I., Glenny, D. & Piippo, S. (2006) Illuminating the evolutionary history of liverworts (Marchantiophyta): towards a natural classification. Cladistics, 22, 1–31.CrossRefGoogle Scholar
Heywood, V. H. & Iriondo, J. M. (2003) Plant conservation: old problems, new perspectives. Biological Conservation, 113, 321–335.CrossRefGoogle Scholar
Higuchi, S., Kawamura, M., Miyajima, I., et al. (2003) Morphology and phylogenetic position of a mat-forming green plant from acidic rivers in Japan. Journal of Plant Research, 116, 461–467.CrossRefGoogle ScholarPubMed
Hock, Z., Szövényi, P. & Toth, Z. (2004) Seasonal variation in the bryophyte diaspore bank of open grasslands on dolomite rocks. Journal of Bryology, 26, 285–292.CrossRefGoogle Scholar
Hock, Z., Szövényi, P., Schneller, J. J., Toth, Z. & Urmi, E. (2008) Bryophyte diaspore bank: a genetic memory? Genetic structure and genetic diversity of surface populations and diaspore bank in the liverwort Mannia fragrans (Aytoniaceae). American Journal of Botany, 95, 542–548.CrossRefGoogle Scholar
Hoekstra, F. A. (2005) Differential longevities in desiccated anhydrobiotic plant systems. Integrative and Comparative Biology, 45, 725–733.CrossRefGoogle ScholarPubMed
Hogg, P., Squires, P. & Fitter, A. H. (1995) Acidification, nitrogen deposition and rapid vegetational change in a small valley mire in Yorkshire. Biological Conservation, 71, 143–153.CrossRefGoogle Scholar
Holz, I. & Gradstein, S. R. (2005) Cryptogamic epiphytes in primary and recovering upper montane oak forests of Costa Rica: species richness, community composition and ecology. Plant Ecology, 178, 547–560.CrossRefGoogle Scholar
Holz, I., Gradstein, R., Heinrichs, J. & Kappelle, M. (2002) Bryophyte diversity, microhabitat differentiation, and distribution of life forms in Costa Rican upper montane Quercus forest. Bryologist, 105, 334–348.CrossRefGoogle Scholar
Hornschuh, M., Grotha, R. & Kutschera, U. (2002) Epiphytic bacteria associated with the bryophyte Funaria hygrometrica: effects of Methylobacterium strains on protonema development. Plant Biology, 4, 682–687.CrossRefGoogle Scholar
Humphries, C. J. & Parenti, L. R. (1999) Cladistic Biogeography, 2nd edn. Oxford: Oxford University Press.Google Scholar
Hutchinson, T. C. & Scott, M. (1988) The response of the feather moss Pleurozium schreberi (Brid.) Mitt. to five years of simulated acid precipitation in the Canadian boreal forest. Canadian Journal of Botany, 66, 82–88.CrossRefGoogle Scholar
Hutsemékers, V., Dopagne, C. & Vanderpoorten, A. (2008) How far and how fast do bryophytes disperse at the landscape scale?Diversity and Distributions, 14, 483–492.CrossRefGoogle Scholar
Huttunen, S., Hedenäs, L., Ignatov, M. S., Devos, N. & Vanderpoorten, A. (2008) Origin and evolution of the northern hemisphere disjunction in the moss genus Homalothecium (Brachytheciaceae). American Journal of Botany, 95, 720–730.CrossRefGoogle Scholar
Hylander, K. & Jonsson, B. G. (2007) The conservation ecology of cryptogams. Biological Conservation, 135, 311–314.CrossRefGoogle Scholar
Hyvönen, J. & Piippo, S. (1993) Cladistic analysis of the hornworts (Anthocerotophyta). Journal of the Hattori Botanical Laboratory, 74, 105–119.Google Scholar
Hyvönen, J., Koponen, T. & Norris, D. H. (1987) Human influence on the moss flora of tropical rain forest in Papua New Guinea. Symposia Biologia Hungarica, 35, 621–629.Google Scholar
Ignatov, M. S. (1992) Bryokhutuliina jurassica, gen. et spec. nova, a remarkable fossil moss from Mongolia. Journal of the Hattori Botanical Laboratory, 71, 377–388.Google Scholar
Ihl, C. & Barboza, P. S. (2007) Nutritional value of moss for Arctic ruminants: a test with muskoxen. Journal of Wildlife Management, 71, 752–758.CrossRefGoogle Scholar
Ines-Sastre, J. & Tan, B. C. (1995) Problems of bryophyte conservation in the tropics: a discussion, with case example from Puerto Rico and the Philippines. Carribean Journal of Science, 31, 200–206.Google Scholar
Ireland, R. R. (1971) Moss pseudoparaphyllia. Bryologist, 74, 313–330.CrossRefGoogle Scholar
,IUCN (2001) iucn.org/themes/ssc/redlists/RLcats2001booklet.html
Johnson, D. S. (1904) The development and relationship of Monoclea. Botanical Gazette, 38, 185–205.CrossRefGoogle Scholar
Jongmans, A. G., Breemen, N., Gradstein, S. R. & Oort, F. (2001) How liverworts build hanging gardens from volcanic ash in Costa Rica. Catena, 44, 13–22.CrossRefGoogle Scholar
Jonsgard, B. & Birks, H. H. (1995) Late-glacial mosses and environmental reconstructions at Kråkenes, western Norway. Lindbergia, 20, 64–82.Google Scholar
Jonsson, B. G. (1993) The bryophyte diaspore bank and its role after small-scale disturbance in a boreal forest. Journal of Vegetation Science, 4, 819–826.CrossRefGoogle Scholar
Jordan, C. F. (1995) Conservation. New York: Wiley.Google Scholar
Kelch, D. G., Driskell, A. & Mishler, B. D. (2004) Inferring phylogeny using genomic characters: a case study using land plant plastomes. Monographs in Systematic Botany from the Missouri Botanical Garden, 98, 3–12.Google Scholar
Kenrick, P. & Crane, P. R. (1997a) The Origin and Early Diversification of Land Plants. A Cladistic Study. Washington, DC: Smithsonian Institution Press.Google Scholar
Kenrick, P. & Crane, P. R. (1997b) The origin and early evolution of plants on land. Nature, 389, 33–39.CrossRefGoogle Scholar
Ketner-Oostra, R. & Sykora, K. V. (2004) Decline of lichen-diversity in calcium-poor coastal dune vegetation since the 1970s, related to grass and moss encroachment. Phytocoenologia, 34, 521–549.CrossRefGoogle Scholar
Kimmerer, R. W. (1993) Disturbance and dominance in Tetraphis pellucida: a model of disturbance frequency and reproductive mode. Bryologist, 96, 73–79.CrossRefGoogle Scholar
Kimmerer, R. W. (1994) Ecological consequences of sexual versus asexual reproduction in Dicranum flagellare and Tetraphis pellucida. Bryologist, 97, 20–25.CrossRefGoogle Scholar
Klanderud, K. & Totland, O. (2005) Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology, 86, 2047–2054.CrossRefGoogle Scholar
Kodner, R. B. & Graham, L. E. (2001) High-temperature, acid-hydrolyzed remains of Polytrichum (Musci, Polytrichaceae) resemble enigmatic Silurian-Devonian tubular microfossils. American Journal of Botany, 88, 462–466.CrossRefGoogle ScholarPubMed
Konopka, A. S., Herendeen, P. S., Smith-Merrill, G. L. & Crane, P. R. (1997) Sporophytes and gametophytes of Polytrichaceae from the late Campanian (Late Cretaceous) of Georgia, USA. International Journal of Plant Sciences, 158, 489–499.CrossRefGoogle Scholar
Konopka, A. S., Herendeen, P. S. & Crane, P. R. (1998) Sporophytes and gametophytes of Dicranaceae from the Santonian (Late Cretaceous) of Georgia, USA. American Journal of Botany, 85, 714–723.CrossRefGoogle ScholarPubMed
Kooijman, A. M. (1993) Causes of the replacement of Scorpidium scorpioides by Calliergonella cuspidata in eutrophicated rich fens. 1. Field studies. Lindbergia, 18, 78–84.Google Scholar
Kooijman, A. M. & Bakker, C. (1993) Causes of the replacement of Scorpidium scorpioides by Calliergonella cuspidata in eutrophicated rich fens: 2. Experimental studies. Lindbergia, 18, 123–130.Google Scholar
Koranda, M., Kerschbaum, S., Wanek, W., Zechmeister, H. & Richter, A. (2007) Physiological responses of bryophytes Thuidium tamariscinum and Hylocomium splendens to increased nitrogen deposition. Annals of Botany, 99, 161–169.CrossRefGoogle ScholarPubMed
Korpelainen, H., Pohjamo, M. & Laaka-Lindberg, S. (2005) How efficiently does bryophyte dispersal lead to gene flow?Journal of the Hattori Botanical Laboratory, 97, 195–205.Google Scholar
Kottke, I., Beiter, A., Weiss, M., et al. (2003) Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycological Research, 107, 957–968.CrossRefGoogle ScholarPubMed
Krings, M., Taylor, T. N., Hass, H., et al. (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution and host responses. New Phytologist, 174, 648–657.CrossRefGoogle Scholar
Krommer, V., Zechmeister, H. G., Roder, I., Scharf, S. & Hanus-Illnar, A. (2007) Monitoring atmospheric pollutants in the biosphere reserve Wienerwald by a combined approach of biomonitoring methods and technical measurements. Chemosphere, 67, 1956–1966.CrossRefGoogle ScholarPubMed
Kruijer, H. (2002) Hypopterygiaceae of the world. Blumea, suppl. 13, 1–388.Google Scholar
Kürschner, H. (2003) The Riccietum jovet-astii–argenteolimbatae ass. nov. of the Jabal Arays area, Yemen: life strategies of a remarkable xerotropical African bryophyte community. Nova Hedwigia, 76, 399–413.CrossRefGoogle Scholar
Kürschner, H. & Parolly, G. (1999) The Epipterygio-Riccietum frostii ass. nov.: ecology and life strategies of an ephemeral bryophyte community in western Turkey. Lindbergia, 24, 84–92.Google Scholar
Kürschner, H. & Parolly, G. (2004) Phytomass and water-storing capacity of epiphytic rain forest communities in S Ecuador. Ecosociological studies in Ecuadorian bryophyte communities. IV. Botanische Jahrbücher für Systematik, 125, 489–504.CrossRefGoogle Scholar
Kürschner, H. & Parolly, G. (2005) Ecosociological studies in Ecuadorian bryophyte communities. III. Life forms, life strategies, and ecomorphology of the submontane and montane epiphytic vegetation of S Ecuador. Nova Hedwigia, 80, 89–114.CrossRefGoogle Scholar
Laaka-Lindberg, S. (2000) Substrate preference and reproduction in Lophozia silvicola (Hepaticopsida) in southern Finland. Annales Botanici Fennici, 37, 85–93.Google Scholar
Laaka-Lindberg, S. (2005) Reproductive phenology in the leafy hepatic Lophozia silvicola Buch in southern Finland. Journal of Bryology, 27, 253–259.CrossRefGoogle Scholar
Laaka-Lindberg, S., Korpelainen, H. & Pohjamo, M. (2003) Dispersal of asexual propagules in bryophytes. Journal of Hattori Botanical Laboratory, 93, 319–330.Google Scholar
Farge-England, C. (1996) Growth form, branching pattern, and perichaetial position in mosses: cladocarpy and pleurocarpy re-defined. Bryologist, 99, 170–186.CrossRefGoogle Scholar
Lambeck, R. J. (1997) Focal species: a multi-species umbrella for nature conservation. Conservation Biology, 11, 849–856.CrossRefGoogle Scholar
Laurance, W. F. (1998) A crisis of the making: responses of Amazonian forests to land use and climate change. Trends in Ecology and Evolution, 13, 411–412.CrossRefGoogle ScholarPubMed
Lavoie, C. & Rochefort, L. (1996) The natural revegetation of a harvested peatland in southern Québec: a spatial and dendroecological analysis. Ecoscience, 3, 101–111.CrossRefGoogle Scholar
Lavoie, M., Paré, D., Fenton, N., Groot, A. & Taylor, K. (2005) Paludification and management of forested peatlands in Canada: a literature review. Environmental Reviews, 13, 21–50.CrossRefGoogle Scholar
LeBlanc, F. & Sloover, J. (1970) Relation between industrialization and the distribution and growth of epiphytic lichens and mosses in Montreal. Canadian Journal of Botany, 48, 1485–1496.CrossRefGoogle Scholar
Lee, J. A. (1998) Unintentional experiments with terrestrial ecosystems: ecological effects of sulphur and nitrogen pollutants. Journal of Ecology, 86, 1–12.CrossRefGoogle Scholar
Leitgeb, H. (1876) Über verzweigte Moossporogonien. Mitteilungen des Naturwissenschaftlichen Vereines für Steiermark, 13, 1–20.Google Scholar
Léon-Vargas, Y., Engwald, S. & Proctor, M. C. F. (2006) Microclimate, light adaptation and desiccation tolerance of epiphytic bryophytes in two Venezuelan cloud forests. Journal of Biogeography, 33, 901–913.CrossRefGoogle Scholar
Levitt, J. (1980) Responses of Plants to Environmental Stresses, 2nd edn. New York: Academic Press.Google Scholar
Lewis Smith, R. I. (1999) Biological and environmental characteristics of three cosmopolitan mosses dominant in continental Antarctica. Journal of Vegetation Science, 10, 231–242.CrossRefGoogle Scholar
Ligrone, R. & Duckett, J. G. (1994) Cytoplasmic polarity and endoplasmic microtubules associated with the nucleus and organelles are ubiquitous features of food-conducting cells in bryoid mosses (Bryophyta). New Phytologist, 127, 601–614.CrossRefGoogle Scholar
Ligrone, R., Duckett, J. G. & Renzaglia, K. S. (1993) The gametophyte–sporophyte junction in land plants. Advances in Botanical Research, 19, 231–317.CrossRefGoogle Scholar
Ligrone, R., Duckett, J. G. & Renzaglia, K. S. (2000) Conducting tissues and phyletic relationships of bryophytes. Philosophical Transactions of the Royal Society, 355, 795–813.CrossRefGoogle ScholarPubMed
Ligrone, R., Carafa, A., Lumin, E., et al. (2007) Glomeromycotean associations in liverworts: a molecular, cellular, and taxonomic analysis. American Journal of Botany, 94, 1756–1777.CrossRefGoogle ScholarPubMed
Ligrone, R., Carafa, A., Duckett, J. G., Renzaglia, K. S. & Ruel, K. (2008) Immunocytochemical detection of lignin-related epitopes in cell walls in bryophytes and the charalean green alga Nitella. Plant Systematics and Evolution, 270, 257–272.CrossRefGoogle Scholar
Limpens, J., Tomassen, H. B. M. & Berendse, F. (2003) Expansion of Sphagnum fallax in bogs: striking the balance between N and P availability. Journal of Bryology, 25, 83–90.CrossRefGoogle Scholar
Lindenmayer, D. B., Margules, C. R. & Botkin, D. (2000) Indicators of forest sustainability biodiversity: the selection of forest indicator species. Conservation Biology, 14, 941–950.CrossRefGoogle Scholar
Lindenmayer, D. B., Manning, A. D., Smith, P. L., et al. (2002) The focal-species approach and landscape restoration: a critique. Conservation Biology, 16, 338–345.CrossRefGoogle Scholar
Longton, R. E. (1992) The role of bryophytes and lichens in terrestrial ecosystems. In Bryophytes in a Changing Environment, eds. Bates, J. W. & Farmer, A. M.. Oxford: Clarendon Press, pp. 32–76.Google Scholar
Longton, R. E. (1997) Reproductive biology and life-history strategies. Advances in Bryology, 6, 65–101.Google Scholar
Longton, R. E. & Hedderson, T. A. (2000) What are rare species and why conserve them?Lindbergia, 25, 53–61.Google Scholar
Longton, R. E. & Schuster, R. M. (1983) Reproductive biology. In New Manual of Bryology, ed. Schuster, R. M.. Nichinan: Hattori Botanical Laboratory, pp. 386–462.Google Scholar
Lopez, J., Retuerto, R. & Carballeira, A. (1997) D665/D665a index vs frequencies as indicators of bryophyte response to physicochemical gradients. Ecology, 78, 261–271.Google Scholar
Lucas, J. R. & Renzaglia, K. S. (2002) Structure and function of hornwort stomata. Proceedings Microscopy and Microanalysis, 8, 1090–1091.Google Scholar
Malcolm, B. & Malcolm, N. (2006) Mosses and Other Bryophytes: An Illustrated Glossary. Nelson: Micro-Optics Press.Google Scholar
Manzke, W. (2004) Zur Verbreitung und Bestandssituation von Notothylas orbicularis, Anthoceros neesii, Anthoceros agrestis, Phaeoceros carolinianus und Riccia ciliata auf Stoppelfeldern im Vogelsberg (Hessen). Hessische Floristische Briefe, 53, 53–65.Google Scholar
Marino, P. C., Raguso, R. A. & Goffinet, B. (2009) Insect mediated spore dispersal in the moss family Splachnaceae: odour chemistry, ecology and evolution. Symbiosis, 47, 61–76.CrossRef
Markert, B. A., Breure, A. M. & Zechmeister, H. G. (2003) Bioindicators and Biomonitors. Principles, Concepts and Applications. Oxford: Elsevier.Google Scholar
Marrero-Gomez, M. V., Banares-Baudet, A. & Carque-Alamo, E. (2003) Plant resource conservation planning in protected natural areas: an example from the Canary Islands, Spain. Biological Conservation, 113, 399–410.CrossRefGoogle Scholar
Marschall, M. & Proctor, M. C. F. (2004) Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Annals of Botany, 94, 593–603.CrossRefGoogle ScholarPubMed
Martinez-Abaigar, J., Nunez-Olivera, E. & Beaucourt, N. (2002) Short-term physiological responses of the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia to KH2PO4 and anoxia. Bryologist, 105, 86–95.CrossRefGoogle Scholar
McArthur, R. H. & Wilson, E. O. (1967) The Theory of Island Biogeography. Princeton: Princeton University Press.Google Scholar
McCourt, R. M., Delwiche, C. F. & Karol, K. G. (2004) Charophyte algae and land plant origins. Trends in Ecology and Evolution, 19, 661–666.CrossRefGoogle ScholarPubMed
McCune, B., Amsberry, K. A., Camacho, F. J., et al. (1997) Vertical profile of epiphytes in a Pacific Northwest old-growth forest. Northwest Science, 71, 145–152.Google Scholar
McDaniel, S. F. & Shaw, A. J. (2003) Phylogeographic structure and cryptic speciation in the trans-Antarctic moss Pyrrhobryum mnioides. Evolution, 57, 205–215.CrossRefGoogle ScholarPubMed
McDowall, R. M. (2004) What biogeography is: a place for process. Journal of Biogeography, 31, 344–351.CrossRefGoogle Scholar
McGlone, M. S. (2005) Goodbye Gondwana. Journal of Biogeography, 32, 739–740.CrossRefGoogle Scholar
McIntosh, T. & Miles, W. (2005) Comments on rare and interesting bryophytes in garry oak ecosystems, British Columbia, Canada. Journal of the Hattori Botanical Laboratory, 97, 263–269.Google Scholar
McLetchie, D. N. & Puterbaugh, M. N. (2000) Population sex ratios, sex-specific clonal traits and tradeoffs among these traits in the liverwort Marchantia inflexa. Oikos, 90, 227–237.CrossRefGoogle Scholar
McLetchie, D. N. & Stark, L. R. (2006) Sporophyte and gametophyte generations differ in their thermotolerance response in the moss Microbryum. Annals of Botany, 97, 505–511.CrossRefGoogle ScholarPubMed
Menand, B., Yi, K., Hoffann, L., et al. (2007) An ancient mechanism controls the development of cells with a rooting function in land plants. Science, 316, 1477–1480.CrossRefGoogle ScholarPubMed
Merrifield, K. & Ingham, R. R. (1998) Nematodes and other aquatic invertebrates in Eurhynchium oreganum from Mary's Peak, Oregon Coast Range. Bryologist, 101, 505–511.CrossRefGoogle Scholar
Meyer, H. & Santarius, K. A. (1998) Short-term thermal acclimatation and heat tolerance of gametophytes of mosses. Oecologia, 115, 1–8.CrossRefGoogle Scholar
Miles, C. J. & Longton, R. E. (1992) Deposition of moss spores in relation to distance from parent gametophytes. Journal of Bryology, 17, 355–368.CrossRefGoogle Scholar
Miller, N. G. & McDaniel, S. F. (2004) Bryophyte dispersal inferred from colonization of an introduced substratum on Whiteface Mountain, New York. American Journal of Botany, 91, 1173–1182.CrossRefGoogle ScholarPubMed
Miller, N. G. & Trigoboff, N. (2001) A European feather moss, Pseudoscleropodium purum, naturalized widely in New York State in cemeteries. Bryologist, 104, 98–103.CrossRefGoogle Scholar
Minami, A., Nagao, M., Arakawa, K., Fujikawa, S. & Takezawa, D. (2006) Physiological and morphological adaptations associated with the development of freezing tolerance in the moss Physcomitrella patens. In Cold Hardiness in Plants: Molecular Genetics, Cell Biology and Physiology, eds. Chen, T. H. H., Uemura, M. & Fujikawa, S.. Wallingford: CAB International, pp. 138–152.Google Scholar
Mishler, B. D. & Churchill, S. P. (1984) A cladistic approach to the phylogeny of the ‘bryophytes’. Brittonia, 36, 406–424.CrossRefGoogle Scholar
Mishler, B. D. & Churchill, S. P. (1985) Transition to a land flora: phylogenetic relationships of the green algae and bryophytes. Cladistics, 1, 305–328.CrossRefGoogle Scholar
Mishler, B. D., Lewis, L. A., Buchheim, M. A., et al. (1994) Phylogenetic relationships of the ‘green algae’ and ‘bryophytes.’Annals of the Missouri Botanical Garden, 81, 451–483.CrossRefGoogle Scholar
Mittelbach, G. G., Schemske, D. W., Cornell, H. V., et al. (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters, 10, 315–331.CrossRefGoogle ScholarPubMed
Moe, B. & Botnen, A. (2000) Epiphytic vegetation on pollarded trunks of Fraxinus excelsior in four different habitats at Grinde, Leikanger, western Norway. Plant Ecology, 151, 143–159.CrossRefGoogle Scholar
Molau, U. & Alatalo, J. M. (1998) Responses of subarctic-alpine plant communities to simulated environmental change: biodiversity of bryophytes, lichens and vascular plants. Ambio, 27, 322–329.Google Scholar
Morgan, J. W. (2006) Bryophyte mats inhibit germination of non-native species in burnt temperate native grassland remnants. Biological Invasions, 8, 159–168.CrossRefGoogle Scholar
Mouvet, C. & Clavieri, B. (1999) Localization of copper accumulated in Rhynchostegium riparioides using sequential chemical extraction. Aquatic Botany, 63, 1–10.CrossRefGoogle Scholar
Mouvet, C., Morhain, E., Sutter, C. & Couturieux, N. (1993) Aquatic mosses for the detection and follow-up of accidental discharges in surface waters. Water, Air and Soil Pollution, 66, 333–348.Google Scholar
Muir, P. S., Norman, K. N. & Sikes, K. G. (2006) Quantity and value of commercial moss harvest from forests of the Pacific Northwest and Appalachian regions of the US. Bryologist, 109, 197–214.CrossRefGoogle Scholar
Müller, P., Li, X. P. & Niyogi, K. K. (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiology, 125, 1558–1566.CrossRefGoogle ScholarPubMed
Muñoz, J., Felicisimo, A. M., Cabezas, F., Burgaz, A. R. & Martinez, I. (2004) Wind as a long-distance dispersal vehicle in the southern Hemisphere. Science, 304, 1144–1147.CrossRefGoogle ScholarPubMed
Nadkarni, N. M. (1984) The biomass and nutrient capital of epiphytes in a neotropical cloud forest, Monteverde. Biotropica, 15, 1–9.Google Scholar
Newton, A. E. & Mishler, B. D. (1994) The evolutionary significance of asexual reproduction in mosses. Journal of the Hattori Botanical Laboratory, 76, 127–145.Google Scholar
Newton, A. E., Cox, C. J., Duckett, J. G., et al. (2000) Evolution of the major moss lineages: Phylogenetic analyses based on multiple gene sequences and morphology. Bryologist, 103, 187–211.CrossRefGoogle Scholar
Newton, A. E., Wikström, N., Bell, N., Forrest, L. L. & Ignatov, M. S. (2007) Dating the diversification of the pleurocarpous mosses. In Pleurocarpous Mosses. Systematics and Evolution, eds. Newton, A. E. & Tangney, R. S.. Boca Raton: Taylor & Francis, pp. 337–366.CrossRefGoogle Scholar
Nishiyama, T., Fujita, T., Shin-I, T., et al. (2003) Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proceedings of the National Academy of Sciences of the USA, 100, 8007–8012.CrossRefGoogle ScholarPubMed
Norden, B., Paltto, H., Götmark, F. & Wallin, K. (2007) Indicators of biodiversity, what do they indicate? Lessons for conservation of cryptogams in oak-rich forest. Biological Conservation, 135, 369–379.CrossRefGoogle Scholar
Økland, R. H. (1994) Patterns of bryophyte associations at different scales in a Norwegian boreal spruce forest. Journal of Vegetation Science, 5, 127–138.CrossRefGoogle Scholar
Økland, R. H. (2000) Population biology of the clonal moss Hylocomium splendens in Norwegian boreal spruce forests. 5. Vertical dynamics of individual shoot segments. Oikos, 88, 449–469.CrossRefGoogle Scholar
Økland, R. H. & Bakkestuen, V. (2004) Fine-scale spatial patterns in populations of the clonal moss Hylocomium splendens partly reflect structuring processes in the boreal forest floor. Oikos, 106, 565–575.CrossRefGoogle Scholar
Økland, R. H. & Økland, T. (1996) Population biology of the clonal moss Hylocomium splendens in Norwegian boreal spruce forests. II. Effects of density. Journal of Ecology, 84, 63–69.CrossRefGoogle Scholar
Oliver, M. J. (1991) Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruralis: ramifications for a repair-based mechanism of desiccation tolerance. Plant Physiology, 97, 1501–1511.CrossRefGoogle ScholarPubMed
Oliver, M. J., Tuba, Z. & Mishler, B. D. (2000) The evolution of vegetative desiccation tolerance in land plants. Plant Ecology, 151, 85–100.CrossRefGoogle Scholar
Oliver, M. J., Velten, J. & Mishler, B. D. (2005) Desiccation tolerance in bryophytes: a reflection of the primitive stategy for plant survival in dehydrating habitats?Integrative and Comparative Biology, 45, 788–799.CrossRefGoogle Scholar
O'Neill, K. P. (2000) Role of bryophyte-dominated ecosystems in the global carbon budget. In Bryophyte Biology, 1st edn, eds. Shaw, A. J. & Goffinet, B.. Cambridge: Cambridge University Press, pp. 344–368.CrossRefGoogle Scholar
O'Shea, B. J. (1997) The mosses of sub-Saharan Africa 2. Endemism and biodiversity. Tropical Bryology, 13, 75–85.Google Scholar
Oyesiku, O. O. & Ogunkolade, O. R. (2006) The relationship between the Nigerian garden snail Limicolaria aurora and the moss Hyophila crenulata. Journal of Bryology, 28, 104–107.CrossRefGoogle Scholar
Parenti, L. R. (1980) A phylogenetic analysis of the land plants. Biological Journal of the Linnean Society, 13, 225–242.CrossRefGoogle Scholar
Parker, J. D., Burkepile, D. E., Collins, D. O., Kubanek, J. & Hay, M. E. (2000) Stream mosses as chemically-defended refugia for freshwater macroinvertebrates. Oikos, 116, 302–312.CrossRefGoogle Scholar
Parsons, G., Cairns, A., Johnson, C. N., et al. (2007) Bryophyte dispersal by flying foxes: a novel discovery. Oecologia, 152, 112–114.CrossRefGoogle ScholarPubMed
Pärtel, M., Helm, A., Ingerpuu, N., Reier, Ü. & Tuvi, E.-V. (2004) Conservation of Northern European plant diversity: the correspondence with soil pH. Biological Conservation, 120, 525–531.CrossRefGoogle Scholar
Pearce, I. S. K. & Wal, R. (2002) Effects of nitrogen deposition on growth and survival of montane Racomitrium lanuginosum heath. Biological Conservation, 104, 83–89.CrossRefGoogle Scholar
Peck, J. E. (2006) Towards sustainable commercial moss harvest in the Pacific Northwest of North America. Biological Conservation, 128, 289–297.CrossRefGoogle Scholar
Peck, J. E. & Christy, J. A. (2006) Putting the stewardship concept into practice: commercial moss harvest in northwestern Oregon, USA. Forest Ecology and Management, 225, 225–233.CrossRefGoogle Scholar
Peck, J. E. & McCune, B. C. (1998) Commercial moss harvest in northwestern Oregon: biomass and accumulation of epiphytes. Biological Conservation, 86, 299–305.CrossRefGoogle Scholar
Pentecost, A. (1998) Some observations on the biomass and distribution of cryptogamic epiphytes in the upper montane forest of Rwenzori mountains, Uganda. Global Ecology and Biogeography Letters, 7, 273–284.CrossRefGoogle Scholar
Pharo, E. J. & Blanks, P. A. M. (2000) Managing a neglected component of biodiversity: a study of bryophyte diversity in production forests of Tasmania's northeast. Australian Forestry, 63, 128–135.CrossRefGoogle Scholar
Pharo, E. J., Beattie, A. J. & Pressey, R. L. (2000) Effectiveness of using vascular plants to select reserves for bryophytes and lichens. Biological Conservation, 96, 371–378.CrossRefGoogle Scholar
Pharo, E. J., Kirkpatrick, J. B., Gilfedder, L., Mendel, L. & Turner, P. A. M. (2005) Predicting bryophyte diversity in grassland and eucalypt-dominated remnants in subhumid Tasmania. Journal of Biogeography, 32, 2015–2024.CrossRefGoogle Scholar
Pirozynski, K. A. & Malloch, D. W. (1975) The origin of land plants: A matter of mycotropism. Biosystems, 6, 153–164.CrossRefGoogle Scholar
Pohjamo, M. & Laaka-Lindberg, S. (2003) Reproductive modes in a leafy hepatic Anastrophyllum hellerianum. Perspectives in Plant Ecology, Evolution and Systematics, 6, 159–168.CrossRefGoogle Scholar
Porley, R. D. & Ellis, R. W. (2002) Timmia megapolitana Hedw. (Bryopsida, Timmiales) new to the British Isles. Journal of Bryology, 24, 151–156.CrossRefGoogle Scholar
Pressel, S., Ligrone, R., Duckett, J. G. & Davis, E. C. (2008a) A novel ascomycetous endophytic association in the rhizoids of the leafy liverwort family Schistochilaceae (Jungermanniidae, Hepaticopsida). American Journal of Botany, 95, 531–541.CrossRefGoogle Scholar
Pressel, S., Ligrone, R. & Duckett, J. G. (2008b) Cellular differentiation in moss protonemata; a morphological and experimental study. Annals of Botany, 102, 227–245.
Price, J. S., Heathwaite, A. L. & Baird, A. J. (2003) Hydrological processes in abandoned and restored peatlands: an overview of management approaches. Wetlands Ecology and Management, 11, 65–83.CrossRefGoogle Scholar
Primack, R. B. (1993) Essentials of Conservation Biology. Sunderland: Sinauer Associates.Google Scholar
Prins, H. H. T. (1982) Why are mosses eaten in cold environments only. Oikos, 38, 374–380.CrossRefGoogle Scholar
Proctor, V. W. (1961) Dispersal of Riella spores by waterfowl. Bryologist, 64, 58–61.CrossRefGoogle Scholar
Proctor, M. C. F. (2000) The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecology, 151, 41–49.CrossRefGoogle Scholar
Proctor, M. C. F. (2001) Patterns of desiccation tolerance and recovery in bryophytes. Plant Growth Regulation, 35, 147–156.CrossRefGoogle Scholar
Proctor, M. C. F. (2003) Experiments on the effect of different intensities of desiccation on bryophyte survival, using chlorophyll fluorescence as an index of recovery. Journal of Bryology, 25, 201–210.CrossRefGoogle Scholar
Proctor, M. C. F. (2004) Light and desiccation responses of Weymouthia mollis and W. cochlearifolia, two pendulous rainforest epiphytes from Australia and New Zealand. Journal of Bryology, 26, 167–173.CrossRefGoogle Scholar
Proctor, M. C. F. (2005) Why do Polytrichaceae have lamellae?Journal of Bryology, 27, 221–230.CrossRefGoogle Scholar
Proctor, M. C. F. (2009) Physiological ecology. In Bryophyte Biology, 2nd edn, eds. Goffinet, B. & Shaw, A. J.. Cambridge: Cambridge University Press, pp. 237–268.Google Scholar
Proctor, M. C. F., Oliver, M. J., Wood, A. J., et al. (2007) Desiccation-tolerance in bryophytes: a review. Bryologist, 110, 595–621.CrossRefGoogle Scholar
Pypker, T. G., Unsworth, M. H. & Bond, B. J. (2006a) The role of epiphytes in rainfall interception by forests in the Pacific Northwest. I. Laboratory measurements of water storage. Canadian Journal of Forest Research, 36, 809–818.CrossRefGoogle Scholar
Pypker, T. G., Unsworth, M. H. & Bond, B. J. (2006b) The role of epiphytes in rainfall interception by forests in the Pacific Northwest. II. Field measurements at the branch and canopy scale. Canadian Journal of Forest Research, 36, 819–832.CrossRefGoogle Scholar
Qian, H. (1999) Spatial pattern of vascular plant diversity in North America North of Mexico and its floristic relationships with Eurasia. Annals of Botany, 83, 271–283.CrossRefGoogle Scholar
Qiu, Y. L., Li, L., Wang, B., et al. (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proceedings of the National Academy of Sciences of the USA, 103, 15511–15516.CrossRefGoogle ScholarPubMed
Raghoebarsing, A. A., Smolders, A. J. P., Schmid, M. C., et al. (2005) Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature, 436, 1153–1156.CrossRefGoogle ScholarPubMed
Raven, P. H. & Axelrod, D. L. (1974) Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden, 61, 539–673.CrossRefGoogle Scholar
Read, D. J., Duckett, J. G., Francis, R., Ligrone, R. & Russell, A. (2000) Symbiotic fungal associations in ‘lower’ land plants. Philosophical Transactions of the Royal Society of London B, 355, 815–830.CrossRefGoogle ScholarPubMed
Redecker, D., Kodner, R. & Graham, L. E. (2000) Glomalean fungi from the Ordovician. Science, 289, 1920–1921.CrossRefGoogle ScholarPubMed
Reese, W. D. (1981) ‘Chlorochytrium’, a green alga endophytic in Musci. Bryologist, 84, 75–78.CrossRefGoogle Scholar
Remy, W., Taylor, T. N., Hass, H. & Kerp, H. (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences of the USA, 91, 11841–11843.CrossRefGoogle ScholarPubMed
Renzaglia, K. S. & McFarland, K. D. (1999) Antheridial plants of Megaceros aenigmaticus in the Southern Appalachians: anatomy, ultrastructure and population distribution. Haussknechtia Beiheft, 9, 307–316.Google Scholar
Renzaglia, K. S., Schuette, S., Duff, R. J., et al. (2007) Bryophyte phylogeny: advancing the molecular and morphological frontiers. Bryologist, 110, 179–213.CrossRefGoogle Scholar
Renzaglia, K. S., Villareal, J. C. & Duff, R. J. (2009) New insights into morphology, anatomy and systematics of hornworts. In Bryophyte Biology, 2nd edn, eds. Goffinet, B. & Shaw, A. J.. Cambridge: Cambridge University Press, pp. 139–171.Google Scholar
Richardson, D. M., Pysek, P., Rejmanek, M., et al., (2000) Naturalizations and invasions of alien plants: concepts and definitions. Diversity and Distributions, 6, 93–107.CrossRefGoogle Scholar
Rieley, J. O., Richards, P. W. & Bebbington, A. D. L. (1979) The ecological role of bryophytes in a North Wales woodland. Journal of Ecology, 67, 497–527.CrossRefGoogle Scholar
Rikkinen, J. & Virtanen, V. (2008) Genetic diversity in cyanobacterial symbionts of thalloids bryophytes. Journal of Experimental Botany, 59, 1013–1021.CrossRefGoogle Scholar
Rochefort, L. (2000) Sphagnum: a keystone genus in habitat restoration. Bryologist, 103, 503–508.CrossRefGoogle Scholar
Rochefort, L. & Lode, E. (2006) Restoration of degraded boreal peatlands. In Boreal Peatland Ecosystems, eds. Wieder, R. K. & Vitt, D. H.. Berlin Heidelberg: Springer Verlag, pp. 381–422.CrossRefGoogle Scholar
Rodgers, G. A. & Stewart, D. P. (1977) The cyanophyte–hepatic symbiosis. I. Morphology and physiology. New Phytologist, 78, 441–458.CrossRefGoogle Scholar
Rothero, G. P., Duckett, J. G. & Pressel, S. (2006) Active conservation: augmenting the only British population of Bryum schleicheri var. latifolium via in vitro cultivation. Field Bryology, 90, 12–16.Google Scholar
Roy, S., Pellinen, J., Sen, C. K. & Hänninen, O. (1995) Benzo(a) anthracene and benzo(a) pyrene exposure in the aquatic plant Fontinalis antipyretica: uptake, elimination and the response to biotransformation and antioxidant enzymes. Chemosphere, 29, 1301–1311.CrossRefGoogle Scholar
Rozzi, R., Armesto, J. J., Goffinet, B., et al. (2008) Changing lenses to assess biodiversity: patterns of species richness in sub-Antarctic plants and implications for global conservation. Frontiers in Ecology and The Environment, 6, 131–137.CrossRefGoogle Scholar
Russell, J. & Bulman, S. (2005) The liverwort Marchantia foliacea forms a specialized symbiosis with AM fungi in the genus Glomus. New Phytologist, 165, 567–579.CrossRefGoogle ScholarPubMed
Rütten, D. & Santarius, K. A. (1992) Relationship between frost tolerance and sugar concentration of various bryophytes in summer and winter. Oecologia, 91, 260–265.CrossRefGoogle ScholarPubMed
Rütten, D. & Santarius, K. A. (1993) Seasonal variation in frost tolerance and sugar content of two Plagiomnium species. Bryologist, 96, 564–568.CrossRefGoogle Scholar
Rydgren, K. & Økland, R. (2002) Sex distribution and sporophyte frequency in a population of the clonal moss Hylocomium splendens. Journal of Bryology, 24, 207–214.CrossRefGoogle Scholar
Rydgren, K. & Økland, R. (2003) Short-term costs of sexual reproduction in the clonal moss Hylocomium splendens. Bryologist, 106, 212–220.CrossRefGoogle Scholar
Rydgren, K., Cronberg, N. & Økland, R. H. (2006) Factors influencing reproductive success in the clonal moss, Hylocomium splendens. Oecologia, 147, 445–454.CrossRefGoogle ScholarPubMed
Rydin, H. (2009) Population and community ecology of bryophytes. In Bryophyte Biology, 2nd edn, eds. Shaw, A. J. & Goffinet, B.. Cambridge: Cambridge University Press, pp. 393–444.Google Scholar
Rydin, H. & Jeglum, J. K. (2006) The Biology of Peatlands. Oxford: Oxford University Press.CrossRefGoogle Scholar
Sagot, C. & Rochefort, L. (1996) Tolérance des sphaignes à la dessication. Cryptogamie, Bryologie Lichénologie, 17, 171–183.Google Scholar
Salonen, V. & Setälä, H. (1992) Plant colonization of bare peat surface: relative importance of seed availability and soil. Ecography, 15, 199–204.CrossRefGoogle Scholar
Salonen, V., Penttinen, A. & Särkkä, A. (1992) Plant colonization of a bare peat surface: population changes and spatial patterns. Journal of Vegetation Science, 3, 113–118.CrossRefGoogle Scholar
Sanderson, M. J. (2003) Molecular data from 27 proteins do not support a Precambrian origin of land plants. American Journal of Botany, 90, 954–956.CrossRefGoogle Scholar
Sanmartin, I., Wanntorp, L. & Winkworth, R. C. (2007) West Wind Drift revisited: testing for directional dispersal in the Southern Hemisphere using event-based tree fitting. Journal of Biogeography, 34, 398–416.CrossRefGoogle Scholar
Sardans, J. & Peñuelas, J. (2008) Drought changes nutrient sources, content and stoichiometry in the bryophyte Hypnum cupressiforme Hedw. growing in a Mediterranean forest. Journal of Bryology, 30, 59–65.CrossRefGoogle Scholar
Såstad, S. M., Pedersen, B. & Digre, K. (1999) Habitat-specific genetic effects on growth rate and morphology across pH and water level gradients within a population of the moss Sphagnum angustifolium (Sphagnaceae). American Journal of Botany, 86, 1687–1698.CrossRefGoogle Scholar
Satake, K., Nishikawa, M. & Shibata, K. (1989) Distribution of aquatic bryophytes in relation to water chemistry of the acid river Akagawa, Japan. Archiv für Hydrobiologie, 116, 299–311.Google Scholar
Schnittler, M. (2001) Foliicolous liverworts as a microhabitat for Neotropical Myxomycetes. Nova Hedwigia, 72, 259–270.Google Scholar
Schofield, W. B. (1984) Bryogeography of the Pacific coast of North America. Journal of the Hattori Botanical Laboratory, 55, 35–43.Google Scholar
Schofield, W. B. (1988) Bryophyte disjunctions in the northern hemisphere: Europe and North America. Botanical Journal of the Linnean Society, 98, 211–224.CrossRefGoogle Scholar
Schofield, W. B. (1992) Bryophyte distribution patterns. In Bryophytes and Lichens in a Changing World, eds. Bates, J. W. & Farmer, A. M.. Oxford: Clarendon Press, pp. 103–130.Google Scholar
Schrenk, C., Pflugmacher, S., Brüggemann, R., et al. (1998) Glutathione S-transferase activity in aquatic macrophytes with emphasis on habitat dependence. Ecotoxicology and Environmental Safety, 40, 226–233.CrossRefGoogle Scholar
Schulze, C. H., Waltert, M., Kessler, P. J. A., et al. (2004) Biodiversity indicator groups of tropical land-use systems: comparing plants, birds, and insects. Ecological Applications, 14, 1321–1333.CrossRefGoogle Scholar
Schüßler, A. (2000) Glomus claroideum forms an arbuscular-mycorrhiza-like symbiosis with the hornwort Anthoceros punctatus. Mycorrhiza, 10, 15–21.Google Scholar
Schuster, R. M. (1966–1992) The Hepaticae and Anthocerotae of North America. Chicago: Field Museum of Natural History.Google Scholar
Schuster, R. M. (1983) Phytogeography of the Bryophyta. In New Manual of Bryology, Vol. 1, ed. Schuster, R. M., Nichinan: Hattori Botanical Laboratory, pp. 463–626.Google Scholar
Schuster, R. M. (1984a) Comparative morphology and anatomy of the Hepaticae. In New Manual of Bryology, Vol. 2, ed. Schuster, R. M.. Nichinan: Hattori Botanical Laboratory, pp. 760–891.Google Scholar
Schuster, R. M. (1984b) Evolution, phylogeny and classification of the Hepaticae. In New Manual of Bryology, Vol. 2, ed. Schuster, R. M.. Nichinan: Hattori Botanical Laboratory, pp. 892–1069.Google Scholar
Schuster, R. M. (1984c) Morphology, phylogeny and classification of the Anthocerotae. In New Manual of Bryology, Vol. 2, ed. Schuster, R. M.. Nichinan: Hattori Botanical Laboratory, pp. 1070–1092.Google Scholar
Selosse, M. A. (2005) Are liverworts imitating mycorrhizas?New Phytologist, 165, 345–349.CrossRefGoogle ScholarPubMed
Selosse, M. A., Baudoin, E. & Vandenkoornhuyse, P. (2004) Symbiotic microorganisms, a key for ecological success and protection of plants. Comptes Rendus Biologie, 327, 639–648.CrossRefGoogle Scholar
Sérgio, C., Araujo, M. & Draper, D. (2000) Portuguese bryophyte diversity and priority areas for conservation. Lindbergia, 25, 116–123.Google Scholar
Shaw, A. J. (1987) Evolution of heavy metal tolerance in bryophytes II. An ecological and experimental investigation of the ‘copper moss’, Scopelophila cataractae (Pottiaceae). American Journal of Botany, 74, 813–821.CrossRefGoogle Scholar
Shaw, A. J. (1988) Genetic variation for tolerance to copper and zinc within and among populations of the moss, Funaria hygrometrica Hedw. New Phytologist, 109, 211–222.CrossRefGoogle Scholar
Shaw, A. J. (1992) The evolutionary capacity of bryophytes and lichens. In Bryophytes and Lichens in a Changing Environment, eds. Bates, J. W. & Farmer, A. M.. Oxford: Clarendon Press, pp. 362–380.Google Scholar
Shaw, A. J. (1994) Adaptation to metals in widespread and endemic plants. Environmental Health Perspectives, 102, Suppl. 12, 105–108.CrossRefGoogle ScholarPubMed
Shaw, A. J. (2000) Molecular phylogeography and cryptic speciation in the mosses, Mielichhoferia elongata and M. mielichhoferiana (Bryaceae). Molecular Ecology, 9, 595–608.CrossRefGoogle Scholar
Shaw, A. J. (2001) Biogeographic patterns and cryptic speciation in bryophytes. Journal of Biogeography, 28, 253–261.CrossRefGoogle Scholar
Shaw, A. J. (2009) Bryophyte species and speciation. In Bryophyte Biology, 2nd edn, eds. Shaw, A. J. & Goffinet, B.. Cambridge: Cambridge University Press, pp. 445–485.Google Scholar
Shaw, A. J. & Albright, D. (1990) Potential for the evolution of heavy metal tolerance in Bryum argenteum, a moss. II. Generalized tolerances among diverse populations. Bryologist, 93, 187–192.CrossRefGoogle Scholar
Shaw, A. J. & Owens, H. (1995) Ecological and experimental studies on the ‘copper mosses’: Mielichhoferia elongata (Bryaceae) and Scopelophila cataractae (Pottiaceae). Fragmenta Floristica et Geobotanica, 40, 519–531.Google Scholar
Shaw, A. J., Meagher, T. R. & Harley, P. (1987) Electrophoretic evidence of reproductive isolation between two varieties of the moss, Climacium americanum. Heredity, 59, 337–343.CrossRefGoogle Scholar
Shaw, A. J., Beer, S. C. & Lutz, J. (1989) Potential for the evolution of heavy metal tolerance in Bryum argenteum, a moss. I. Variation within and among populations. Bryologist, 92, 72–80.CrossRefGoogle Scholar
Shaw, A. J., Werner, O. & Ros, R. M. (2003) Intercontinental Mediterranean disjunct mosses: morphological and molecular patterns. American Journal of Botany, 90, 540–550.CrossRefGoogle ScholarPubMed
Shaw, A. J., Cox, C. J. & Goffinet, B. (2005) Global patterns of moss diversity: taxonomic and molecular inferences. Taxon, 54, 337–352.CrossRefGoogle Scholar
Shimamura, M., Yamaguchi, T. & Deguchi, H. (2008) Airborne sperm of Conocephalum conicum (Conocephalaceae). Journal of Plant Research, 121, 69–71.CrossRefGoogle Scholar
Sillett, S. C., Gradstein, S. R. & Griffin, D. (1995) Bryophyte diversity of Ficus tree crowns from cloud forest and pasture in Costa Rica. Bryologist, 98, 251–260.CrossRefGoogle Scholar
Simard, M., Lecomte, N., Bergeron, Y., Bernier, P. & Paré, D. (2007) Forest productivity decline by successional paludification of boreal soils. Ecological Applications, 17, 1619–1637.CrossRefGoogle ScholarPubMed
Slack, N. G. (1990) Bryophytes and ecological niche theory. Botanical Journal of the Linnean Society, 104, 187–213.CrossRefGoogle Scholar
Smith, R. M., Young, M. R. & Marquiss, M. (2001) Bryophyte use by an insect herbivore: does the cranefly Tipula montana select food to maximize growth?Ecological Entomology, 26, 83–90.CrossRefGoogle Scholar
Snäll, T., Fogelqvist, J., Bibeiro, P. J. & Lascoux, L. (2004a) Spatial genetic structure in two congeneric epiphytes with different dispersal strategies analysed by three different methods. Molecular Ecology, 13, 2109–2119.CrossRefGoogle ScholarPubMed
Snäll, T., Hagstrom, A., Rudolphi, J. & Rydin, H. (2004b) Distribution pattern of the epiphyte Neckera pennata on three spatial scales: importance of past landscape structure, connectivity and local conditions. Ecography, 27, 757–766.CrossRefGoogle Scholar
Söderström, L. (1992) Invasions and range expansions and contractions of bryophytes. In Bryophytes and Lichens in a Changing Environment, eds. Bates, J. W. & Farmer, A. M.. Oxford: Clarendon Press, pp. 131–158.Google Scholar
Söderström, L. & Herben, T. (1997) Dynamics of bryophyte metapopulations. Advances in Bryology, 6, 205–240.Google Scholar
Söderström, L., Séneca, A. & Santos, M. (2007) Rarity patterns in the northern hemisphere members of the Lophoziaceae/Scapaniaceae complex (Hepaticae, Bryophyta). Biological Conservation, 135, 352–359.CrossRefGoogle Scholar
Solheim, B. & Zielke, M. (2002) Associations between cyanobacteria and mosses. In Cyanobacteria in Symbiosis, eds. Rai, A. N., Bergman, B. & Rasmussen, U.. Dordrecht: Kluwer, pp. 137–152.Google Scholar
Sotiaux, A., Pioli, A., Royaud, A., Schumacker, R. & Vanderpoorten, A. (2007) A checklist of the bryophytes of Corsica (France): new records and a review of the literature. Journal of Bryology, 29, 41–53.CrossRefGoogle Scholar
Stark, L. R. (2005) Phenology of patch hydration, patch temperature and sexual reproductive output over a four-year period in the desert moss Crossidium crassinerve. Journal of Bryology, 27, 231–240.CrossRefGoogle Scholar
Stark, L. R. & McLetchie, D. N. (2006) Gender-specific heat-shock tolerance of hydrated leaves in the desert moss Syntrichia caninervis. Physiologia Plantarum, 126, 187–195.CrossRefGoogle Scholar
Stark, L. R., Mishler, B. D. & McLetchie, D. N. (2000) The cost of realized sexual reproduction: assessing patterns of reproductive allocation and sporophyte abortion in a desert moss. American Journal of Botany, 87, 1599–1608.CrossRefGoogle Scholar
Steinman, A. D. (1994) The influence of phosphorus enrichment on lotic bryophytes. Freshwater Biology, 31, 53–63.CrossRefGoogle Scholar
Stenoien, H. K. (2008) Slow molecular evolution in 18S rDNA, rbcL and nad5 genes of mosses compared with higher plants. Journal of Evolutionary Biology, 21, 566–571.CrossRefGoogle ScholarPubMed
Stephenson, S. L., Studlar, S. M., McQuattie, C. J. & Edwards, P. J. (1995) Effects of acidification on bryophyte communities in West Virginia mountain streams. Journal of Environment Quality, 4, 116–124.CrossRefGoogle Scholar
Stieperaere, H. (1994) Lophocolea semiteres (Lehm.) Mitt. In Belgium and The Netherlands, another antipodal bryophyte spreading on the European continent. Lindbergia, 19, 29–36.Google Scholar
Sundberg, S. & Rydin, H. (2002) Habitat requirements for establishment of Sphagnum by spores. Journal of Ecology, 90, 268–278.CrossRefGoogle Scholar
Suren, A. M. (1991) Bryophytes as invertebrate habitat in two New Zealand alpine streams. Freshwater Biology, 26, 399–418.CrossRefGoogle Scholar
Szövényi, P., Hock, Z. & Tóth, Z. (2004) Phorophyte preference of epiphytic bryophytes in a stream valley in the Carpathian Basin. Journal of Bryology, 26, 137–146.CrossRefGoogle Scholar
Szövényi, P., Hock, Z., Urmi, E. & Schneller, J. J. (2006) Contrasting phylogeographic patterns in Sphagnum fimbriatum and Sphagnum squarrosum (Bryophyta, Sphagnopsida) in Europe. New Phytologist, 172, 784–794.CrossRefGoogle Scholar
Szövényi, P., Hock, Z., Schneller, J. J. & Tóth, Z. (2007) Multilocus dataset reveals demographic histories of two peat mosses in Europe. BMC Evolutionary Biology, 7, art. 144.CrossRefGoogle Scholar
Takhtajan, A. L. (1986) The Floristic Regions of the World. Berkeley: UC Press.Google Scholar
Tallis, J. H. (1964) Studies on southern Pennines. III. The behaviour of Sphagnum. Journal of Ecology, 52, 345–353.CrossRefGoogle Scholar
Tallis, J. H. (1995) Climate and erosion signals in British blanket peats: the significance of Racomitrium lanuginosum remains. Journal of Ecology, 83, 1021–1030.CrossRefGoogle Scholar
Tan, B. C. & Pocs, T. (2000) Bryogeography and conservation of bryophytes. In Bryophyte Biology, 1st edn, eds. Shaw, A. J. & Goffinet, B.. Cambridge: Cambridge University Press, pp. 403–448.CrossRefGoogle Scholar
Tanahashi, T., Sumikawa, N., Kato, M. & Hasebe, M. (2005) Diversification of gene function: homologs of the floral regulator FLO/LFY control the first zygotic cell division in the moss Physcomitrella patens. Development, 132, 1727–1736.CrossRefGoogle ScholarPubMed
Taylor, T. N., Klavins, S. D., Krings, M., et al. (2004) Fungi from the Rhynie chert: a view from the dark side. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94, 457–473.CrossRefGoogle Scholar
Thiébaut, G., Vanderpoorten, A., Guérold, F., Boudot, J.-P. & Muller, S. (1998) Bryological patterns and streamwater acidification in the Vosges Mountains (N.E. France): an analysis tool for the survey of acidification processes. Chemosphere, 36, 1275–1289.CrossRefGoogle Scholar
Thingsgaard, K. (2001) Population structure and genetic diversity of the amphiatlantic haploid peatmoss Sphagnum affine (Sphagnopsida). Heredity, 87, 485–496.CrossRefGoogle Scholar
Tivy, J. (1993) Biogeography. A Study of Plants in the Ecosphere, 3rd edn. Harlow: Longman group.Google Scholar
Tremp, H. & Kohler, A. (1993) Wassermoose als Versauerungsindikatoren. Praxiesorientierte Bioindikationsvervahren mit Wassermoosen zur Überwachung des Zauerezustandes von pufferschwachen Fliessgewässern. Karlsruhe: Landesanstalt für Umweltschutz Baden-Würrtemberg.Google Scholar
Tuba, Z., Csintalan, Z. & Proctor, M. C. F. (1996) Photosynthetic responses of a moss, Tortula ruralis ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of dessication, and their ecophysiological significance: a baseline study at present-day CO2 concentrations. New Phytologist, 133, 353–361.CrossRefGoogle Scholar
Turetsky, M. R. & St Louis, V. L. (2006) Disturbance in boreal peatlands. In Boreal Peatland Ecosystems, eds. Wieder, R. K. & Vitt, D. H.. Berlin-Heidelberg: Springer, pp. 359–379.CrossRefGoogle Scholar
Ueno, T., Bekku, Y., Uchida, M. & Kanda, H. (2006) Photosynthetic light responses of a widespread moss, Sanionia uncinata, from contrasting water regimes in the high Arctic tundra, Svalbard, Norway. Journal of Bryology, 28, 345–349.CrossRefGoogle Scholar
Upchurch, P. (2008) Gondwanan break-up: legacies of a lost world?Trends in Ecology and Evolution, 23, 229–236.CrossRefGoogle ScholarPubMed
VanAller Hernick, L., Landing, E. & Bartowski, K. E. (2008) Earth's oldest liverworts: Metzgeriothallus sharonae sp. nov. from the Middle Devonian (Givetian) of eastern New York, USA. Review of Paleobotany and Palynology, 148, 154–162.CrossRefGoogle Scholar
Breemen, N. (1995) How Sphagnum bogs down other plants. Trends in Ecology and Evolution, 10, 270–275.CrossRefGoogle ScholarPubMed
Vanderpoorten, A. (1999) Aquatic bryophytes for a spatio-temporal monitoring of the water pollution of the rivers Meuse and Sambre (Belgium). Environmental Pollution, 104, 401–410.CrossRefGoogle Scholar
Vanderpoorten, A. (2003) Hydrochemical determinism, ecological polymorphism and indicator values of aquatic bryophytes for water quality. In Modern Trends in Applied Aquatic Ecology, eds. Ambasht, R. S. & Ambasht, N. K.. New York: Kluwer Academic Publishers, pp. 65–96.CrossRefGoogle Scholar
Vanderpoorten, A. (2004) A simple treatment for a complicated evolutionary history: the genus Hygroamblystegium (Hypnales, Amblystegiaceae). Monographs in Systematic Botany from the Missouri Botanical Garden, 98, 320–327.Google Scholar
Vanderpoorten, A. & Engels, P. (2002) The effects of environmental variation on bryophytes at a regional scale. Ecography, 25, 513–522.CrossRefGoogle Scholar
Vanderpoorten, A. & Engels, P. (2003) Patterns of bryophyte diversity and rarity at a regional scale. Biodiversity and Conservation, 12, 545–553.CrossRefGoogle Scholar
Vanderpoorten, A. & Hallingbäck, T. (2009) Conservation biology. In Bryophyte Biology, 2nd edn, eds. Goffinet, B. & Shaw, A. J.. Cambridge: Cambridge University Press, pp. 487–533.Google Scholar
Vanderpoorten, A., Sotiaux, A. & Engels, P. (2004a) Trends in diversity and abundance of obligate epiphytic bryophytes in a highly managed landscape. Ecography, 27, 567–576.CrossRefGoogle Scholar
Vanderpoorten, A., Delescaille, L. & Jacquemart, A.-L. (2004b) The bryophyte layer in a calcareous grassland after a decade of contrasting mowing regimes. Biological Conservation, 117, 11–18.CrossRefGoogle Scholar
Vanderpoorten, A., Carine, M. A. & Rumsey, F. (2007) Does Macaronesia exist? Conflicting signals in the bryophyte and pteridophyte floras. American Journal of Botany, 94, 625–639.CrossRefGoogle Scholar
Velde, M. & Bijlsma, R. (2000) Amount and structure of intra- and interspecific genetic variation in the moss genus Polytrichum. Heredity, 85, 328–337.CrossRefGoogle Scholar
Wal, R. & Brooker, R. W. (2004) Mosses mediate grazer impacts on grass abundance in arctic ecosystems. Functional Ecology, 18, 77–86.Google Scholar
Wijk, R., Margadant, W. D. & Florschütz, P. A. (1959) Index Muscorum. Regnum Vegetabile 17.Google Scholar
Tooren, B. F., Odé, B., During, H. J. & Bobbink, R. (1990) Regeneration of species richness in the bryophyte layer of Dutch chalk grasslands. Lindbergia, 16, 153–160.Google Scholar
Tooren, B. F., Odé, B. & Bobbink, R. (1991) Management of Dutch chalk grasslands and the species richness of the cryptogam layer. Acta Botanica Neerlandica, 40, 379–380.Google Scholar
Zanten, B. O. (1978) Experimental studies on transoceanic long-range dispersal of moss spores in the southern hemiphere. Journal of the Hattori Botanical Laboratory, 44, 455–482.Google Scholar
Villarreal, J. C. & Renzaglia, K. S. (2006) Structure and development of Nostoc strands in Leiosporoceros dussii (Anthocerotophyta): a novel symbiosis in land plants. American Journal of Botany, 93, 693–705.CrossRefGoogle Scholar
Virtanen, V., Korpelainen, H. & Kostamo, K. (2007) Forensic botany: usability of bryophyte material in forensic studies. Forensic Science International, 172, 161–163.CrossRefGoogle ScholarPubMed
Vitt, D. H. (1981) Adaptive modes of the moss sporophyte. Bryologist, 84, 166–186.CrossRefGoogle Scholar
Vitt, D. H. (1984) Classification of the Bryopsida. In New Manual of Bryology, Vol. 2, ed. Schuster, R. M., Nichinan: Hattori Botanical Laboratory, pp. 696–759.Google Scholar
Vitt, D. H. & Wieder, R. K. (2009) The structure and function of bryophyte dominated peatlands. In Bryophyte Biology. 2nd edn, eds. Goffinet, B. & Shaw, A. J.. Cambridge: Cambridge University Press, pp. 357–391.Google Scholar
Voth, P. D. (1943) Effects of nutrient solution concentration on the growth of Marchantia polymorpha. Botanical Gazette, 104, 591–601.CrossRefGoogle Scholar
Wall, D. P. (2005) Origin and rapid diversification of a tropical moss. Evolution, 59, 1413–1424.CrossRefGoogle ScholarPubMed
Wang, B. & Qiu, Y.-L. (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16, 299–363.CrossRefGoogle ScholarPubMed
Wasley, J., Robinson, S. A., Lovelock, C. E. & Popp, M. (2006) Climate change manipulations show Antarctic flora is more strongly affected by elevated nutrients than water. Global Change Biology, 12, 1800–1812.CrossRefGoogle Scholar
Welch, J. J. & Bromham, L. (2005) Molecular dating when rates vary. Trends in Ecology and Evolution, 20, 320–327.CrossRefGoogle ScholarPubMed
Wellman, C. H. & Gray, J. (2000) The microfossil record of early land plants. Philosophical Transactions of the Royal Society of LondonB, 355, 717–732.Google Scholar
Wells, J. M. & Brown, D. H. (1996) Mineral nutrient recycling within shoots of the moss Rhytidiadelphus squarrosus in relation to growth. Journal of Bryology, 19, 1–17.CrossRefGoogle Scholar
Whinam, J. & Buxton, R. (1997) Sphagnum peatlands of Australia: an assessment of harvesting sustainability. Biological Conservation, 82, 21–29.CrossRefGoogle Scholar
Whinam, J., Barmuta, L. A. & Chilcott, N. (2001) Floristic description and environmental relationships of Tasmanian Sphagnum communities and their conservation management. Australian Journal of Botany, 49, 673–685.CrossRefGoogle Scholar
Whittaker, R. J. (1998) Island Biogeography: Ecology, Evolution and Conservation. Oxford: Oxford University Press.Google Scholar
Wigginton, M. J. (2004) Checklist and distribution of the liverworts and hornworts of sub-Saharan Africa, including the East African Islands. Tropical Bryology Research Report, 5, 1–102.Google Scholar
Wiklund, K. & Rydin, H. (2004a) Ecophysiological constraints on spore establishment in bryophytes. Functional Ecology, 18, 907–913.CrossRefGoogle Scholar
Wiklund, K. & Rydin, H. (2004b) Colony expansion of Neckera pennata: Modelled growth rate and effect of microhabitat, competition, and precipitation. Bryologist, 107, 293–301.CrossRefGoogle Scholar
Williams, C. B. & Sillett, S. C. (2007) Epiphyte communities on redwood (Sequoia sempervirens) in northwestern California. Bryologist, 110, 420–452.CrossRefGoogle Scholar
Wilson, P. J. & Provan, J. (2003) Effect of habitat fragmentation on levels and patterns of genetic diversity in natural populations of the peat moss Polytrichum commune. Proceedings of the Royal Society of London B, 270, 881–886.CrossRefGoogle ScholarPubMed
Wolf, J. H. D. (1993) Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Annals of the Missouri Botanical Garden, 80, 928–960.CrossRefGoogle Scholar
Woolgrove, C. E. & Woodin, S. J. (1996) Current and historical relationships betweeen the tissue nitrogen content of a snowbed bryophyte and nitrogenous air pollution. Environmental Pollution, 91, 283–288.CrossRefGoogle Scholar
Yang, R.-D., Mao, J.-R., Zhang, W.-H., Jiang, L.-J. & Gao, H. (2004) Bryophyte-like fossil (Parafunaria sinensis) from Early-Middle Cambrian Kaili formation in Guizhou Province, China. Acta Botanica Sinica, 46, 180–185.Google Scholar
Yates, C. J., Norton, D. A. & Hobbs, R. J. (2000) Grazing effects on plant cover, soil and microclimate in fragmented woodlands in south-western Australia: implications for restoration. Austral Ecology, 25, 36–47.CrossRefGoogle Scholar
Zamfir, M. (2000) Effects of bryophytes and lichens on seedling emergence of alvar plants: evidence from greenhouse experiments. Oikos, 88, 603–611.CrossRefGoogle Scholar
Zartman, C. E. & Nascimento, H. E. M. (2006) Are habitat-tracking metacommunities dispersal-limited? Inferences from abundance–occupancy patterns of epiphylls in Amazonian forest fragments. Biological Conservation, 127, 46–54.CrossRefGoogle Scholar
Zartman, C. E. & Shaw, A. J. (2006) Metapopulation extinction thresholds in rain forest remnants. American Naturalist, 167, 177–189.CrossRefGoogle ScholarPubMed
Zechmeister, H. (2005) Bryophytes of continental salt meadows in Austria. Journal of Bryology, 27, 297–302.CrossRefGoogle Scholar
Zechmeister, H. G. & Hohenwallner, D. (2006) A comparison of biomonitoring methods for the estimation of atmospheric pollutants in an industrial town in Austria. Environmental Monitoring and Assessment, 117, 245–259.CrossRefGoogle Scholar
Zechmeister, H. G., Schmitzberger, I., Steurer, B., Peterseil, J. & Wrbka, T. (2003a) The influence of land-use practices and economics on plant species richness in meadows. Biological Conservation, 114, 165–177.CrossRefGoogle Scholar
Zechmeister, H. G., Grodzinska, K. & Szarek-Lukaszewska, G. (2003b) Bryophytes. In Bioindicators and Biomonitors. Principles, Concepts and Applications, eds. Markert, B. A., Breure, A. M. & Zechmeister, H. G.. Oxford: Elsevier, pp. 329–375.CrossRefGoogle Scholar
Zechmeister, H., Dullinger, S., Hohenwallner, D., et al. (2006) Pilot study on road traffic emissions (PAHs, heavy metals) measured by using mosses in a tunnel experiment in Vienna, Austria. Environmental Science Pollution Research, 13, 398–405.CrossRefGoogle Scholar
Zechmeister, H., Moser, D. & Milasowszky, N. (2007a) Spatial distribution patterns of Rhynchostegium megapolitanum at the landscape scale: an expanding species?Applied Vegetation Science, 10, 111–120.Google Scholar
Zechmeister, H., Dirnböck, T., Hülber, K. & Mirtl, M. (2007b) Assessing airborne pollution effects on bryophytes: lessons learned through long-term integrated monitoring in Austria. Environmental Pollution, 147, 696–705.CrossRefGoogle ScholarPubMed
Zhang, Y. & Guo, L.-D. (2007) Arbuscular mycorrhizal structure and fungi associated with mosses. Mycorrhiza, 17, 319–325.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Alain Vanderpoorten, Université de Liège, Belgium, Bernard Goffinet, University of Connecticut
  • Book: Introduction to Bryophytes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511626838.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Alain Vanderpoorten, Université de Liège, Belgium, Bernard Goffinet, University of Connecticut
  • Book: Introduction to Bryophytes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511626838.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Alain Vanderpoorten, Université de Liège, Belgium, Bernard Goffinet, University of Connecticut
  • Book: Introduction to Bryophytes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511626838.013
Available formats
×