Published online by Cambridge University Press: 02 February 2010
In Chapter 2 we introduced the notion of a Riemannian foliation: this is a foliation whose normal bundle is equipped with a metric which is, in an appropriate sense, invariant under transport along the leaves of the foliation. In this chapter we study some special classes of Riemannian foliations, and some ways of constructing them, with the ultimate goal of proving Molino's ‘structure theorem’.
The most important class of Riemannian foliations in this chapter is that of transversely parallelizable ones. While an ordinary manifold is called parallelizable if its tangent bundle is trivial, a foliated manifold is called transversely parallelizable if its normal bundle is trivial, and if moreover a trivialization exists which is invariant under transport along the leaves. Intuitively speaking, these are the foliated manifolds whose ‘space of leaves’ is parallelizable.
A special class of transversely parallelizable foliations (to be discussed in Subsection 4.3.1 below) are the so-called Lie foliations. These are foliations defined as the kernel of a ‘Maurer–Cartan’ differential 1-form with values in a Lie algebra.
Another way of obtaining transversely parallelizable foliations, to be discussed in Subsection 4.2.2, is by pulling back a given Riemannian foliation on a manifold M to a suitable transverse frame bundle over M. This construction will form an important ingredient for Molino's structure theorem.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.