Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-08T08:34:47.556Z Has data issue: false hasContentIssue false

4 - Photon sources and detectors

from Part II - Quantum information in photons and atoms

Published online by Cambridge University Press:  05 July 2014

Pieter Kok
Affiliation:
University of Sheffield
Brendon W. Lovett
Affiliation:
Heriot-Watt University, Edinburgh
Get access

Summary

In optical quantum information processing, two of the most basic elements are the sources of quantum mechanical states of light, and the devices that can detect these states. In this chapter, we narrow this down to photon sources and photodetectors. We will describe first how detectors work, starting from abstract ideal detectors, via a complete description of realistic detectors in terms of POVMS, to a brief overview of current photodetectors. Subsequently, we will define what is a single-photon source, and how we can determine experimentally whether a source produces single photons or something else. Having laid down the ground rules, we will survey some of the most popular ways photons are produced in the laboratory. Finally, we take a look at the production of entangled photon sources and quantum non-demolition measurements of photons.

A mathematical model of photodetectors

Photodetectors are devices that produce a macroscopic signal when triggered by one or more photons. In the ideal situation, every photon that hits the detector contributes to the macroscopic signal, and there are no ‘ghost’ signals, or so-called dark counts. In this situation we can define two types of detector, namely the ‘photon-number detector’, and ‘detectors without number resolution’.

First, the photon number detector is a (largely hypothetical) device that tells us how many photons there are in a given optical mode that is properly localized in space and time. This property is called ‘photon-number resolution’.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×