Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-17T23:38:54.057Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2014

Pieter Kok
Affiliation:
University of Sheffield
Brendon W. Lovett
Affiliation:
Heriot-Watt University, Edinburgh
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achilles, D., Silberhorn, C., Sliwa, C, Banaszek, K., and Walmsley, I. A. (2003). Fiberassisted detection with photon-number resolution. Opt. Lett., 28:2387.CrossRefGoogle ScholarPubMed
Adami, C. and Cerf, N. J. (1999). Quantum computation with linear optics. Lect. Notes Comput. Sc., 1509:391.CrossRefGoogle Scholar
Akopian, N., Lindner, N. H., Poem, E., Berlatzky, Y., Avron, J., Gershoni, D., Gerardot, B. D., and Petroff, P. M. (2006). Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett., 96:130501.CrossRefGoogle ScholarPubMed
Allen, L., Barnett, S. M., and Padgett, M. J. (2003). Optical Angular Momentum. Institute of Physics.CrossRefGoogle Scholar
Aoki, T., Takahashi, G., Kajiya, T., Yoshikawa, J., Braunstein, S. L., van Loock, P., and Furusawa, A. (2008). Quantum error correction beyond qubits. arXiv:0811.3734.Google Scholar
Armani, D. K., Kippenberg, T. J., Spillane, S. M., and Vahala, K. J. (2003). Ultra-high-Q toroid microcavity on a chip. Nature, 421:925.CrossRefGoogle ScholarPubMed
Ashcroft, N. W. and Mermin, N. D. (1976). Solid State Physics. Thompson Learning.Google Scholar
Atatüre, M., Dreiser, J., Badolato, A., and Imamoglu, A. (2007). Observation of Faraday rotation from a single confined spin. Nature Physics, 3:101.CrossRefGoogle Scholar
Atkins, P. W. and Friedman, R. S. (2005). Molecular Quantum Mechanics, Fourth Edition. Oxford University Press.Google Scholar
Banaszek, K., Dragan, A., Wasilewski, W., andRadzewicz, C. (2004). Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise. Phys. Rev. Lett., 97:257901.CrossRefGoogle Scholar
Barnett, S. M. and Radmore, P. M. (1997). Methods in Theoretical Quantum Optics, volume 15 of Oxford Series in Optical and Imaging Science. Clarendon Press.Google Scholar
Barrett, S. D. and Kok, P. (2005). Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A, 71:060310(R).CrossRefGoogle Scholar
Barrett, M. D., Chiaverini, J., Schaetz, T., Britton, J., Itano, W. M., Jost, J. D., Knill, E., Langer, C., Leibfried, D., Ozeri, R., and Wineland, D. J. (2004). Deterministic quantum teleportation of atomic qubits. Nature, 429:737.CrossRefGoogle ScholarPubMed
Barrett, S. D., Rohde, P. P., and Stace, T. M. (2008). arXiv.0804.0q62.
Bartlett, S. D., Rudolph, T., and Spekkens, R. W. (2007). Reference frames, superselection rules, and quantum information. Rev. Mod. Phys., 79:555.CrossRefGoogle Scholar
Basché, T., Moerner, W. E., Orrit, M., and Talon, H. (1992). Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett., 69:1516.CrossRefGoogle Scholar
Bason, M. G., Mohapatra, A. K., Weatherill, K. J., and Adams, C. S. (2009). Narrow absorptive resonances in a four-level atomic system. J. Phys. B, 42:075503.CrossRefGoogle Scholar
Basu, P. K. (1997). Theory of Optical Processes in Semiconductors. Oxford University Press.Google Scholar
Beausoleil, R. G., Munro, W. J., and Spiller, T. P. (2004). Applications of coherent population transfer to quantum information processing. J. Mod. Opt., 51:1559.CrossRefGoogle Scholar
Beijersbergen, M. W., Allen, L., van der Veen, H. E. L. O., and Woerdman, J. P. (1993). Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun., 96:123.CrossRefGoogle Scholar
Benjamin, S. C. (2000). Schemes for parallel quantum computation without local control of qubits. Phys. Rev. A, 61:020301(R).CrossRefGoogle Scholar
Benjamin, S. C. and Bose, S. (2004). Quantum computing in arrays coupled by ‘always-on’ interactions. Phys. Rev. A, 70:032314.CrossRefGoogle Scholar
Benjamin, S. C., Browne, D. E., Fitzsimons, J., and Morton, J. J. L. (2006). Brokered graph state quantum computing. New J. Phys., 8:141.CrossRefGoogle Scholar
Benjamin, S. C., Lovett, B. W., and Reina, J. H. (2004). Optical quantum computation with perpetually coupled spins. Phys. Rev. A, 70:060305(R).CrossRefGoogle Scholar
Bennett, C. H. and Brassard, G. (1984). Quantum cryptography: public key distribution and coin tossing. Proc. IEEE Int. Conference on Computers, Systems and Signal Processing, page 175.Google Scholar
Bennett, C. H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., and Wootters, W. K. (1993). Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 70:1895.CrossRefGoogle ScholarPubMed
Bennett, C. H., DiVincenzo, D. P., Smolin, J. A., and Wootters, W. K. (1996). Mixed-state entanglement and quantum error correction. Phys. Rev. A, 54:3824.CrossRefGoogle ScholarPubMed
Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A., and Awschalom, D. D. (2008). Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science, 320:349.CrossRefGoogle Scholar
Bhattacharyya, K. (1983). Quantum decay and the Mandelstam-Tamm time-energy inequality. J. Phys. A, 16:2993.CrossRefGoogle Scholar
Bigelow, M. S., Lepeshkin, N. N., and Boyd, R. W. (2003). Superluminal and slow light propagation in a room temperature solid. Science, 301:200.CrossRefGoogle Scholar
Biolatti, E., D'Amico, I., Zanardi, P., and Rossi, F. (2002). Electro-optical properties of semiconductor quantum dots: applications to quantum information processing. Phys. Rev. B, 65:075306.CrossRefGoogle Scholar
Bjorken, J. D. and Drell, S. D. (1965). Relativistic Quantum Fields. International series in pure and applied physics. McGraw-Hill.Google Scholar
Bollinger, J. J., Itano, W. M., Wineland, D. J., and Heinzen, D. J. (1996). Optimal frequency measurements with maximally correlated states. Phys. Rev. A, 54:R4649.CrossRefGoogle ScholarPubMed
Borri, P., Langbein, W., Schneider, S., Woggon, U., Sellin, R. L., Ouyang, D., and Bimberg, D. (2001). Long-lived coherence in self-assembled quantum dots. Phys. Rev. Lett., 87:157401.CrossRefGoogle Scholar
Boschi, D., Branca, S., DeMartini, F., Hardy, L., and Popescu, S. (1998). Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 80:1121.CrossRefGoogle Scholar
Bose, S., Knight, P. L., Plenio, M. B., and Vedral, V. (1999a). Proposal for teleportation of an atomic state via cavity decay. Phys. Rev. Lett., 83:5158.CrossRefGoogle Scholar
Bose, S., Vedral, V., and Knight, P. L. (1999b). Purification via entanglement swapping and conserved entanglement. Phys. Rev. A, 60:194.CrossRef
Bouwmeester, D., Pan, J. W., Mattle, K., Eibl, M., Weinfurter, H., and Zeilinger, A. (1997). Experimental quantum teleportation. Nature, 390:575.CrossRefGoogle Scholar
Boyd, R. W. (2003). Nonlinear Optics. Second edition. Academic Press.Google Scholar
Brandes, T. (2005). Coherent and collective quantum optical effects in mesoscopic coherent and collective quantum optical effects in mesoscopic systems. Phys. Rep., 408:315.CrossRefGoogle Scholar
Braunstein, S. L. (1996). Geometry of quantum inference. Phys. Lett. A, 219:169.CrossRefGoogle Scholar
Braunstein, S. L. (1998a). Error correction for continuous quantum variables. Phys. Rev. Lett., 80:4084.CrossRefGoogle Scholar
Braunstein, S. L. (1998b). Quantum error correction for communication with linear optics. Nature, 394:47.CrossRefGoogle Scholar
Braunstein, S. L. (2005). Squeezing as an irreducible resource. Phys. Rev. A, 71:055801.CrossRefGoogle Scholar
Braunstein, S. L. and Caves, C. M. (1994). Statistical distance and the geometry of quantum states. Phys. Rev. Lett., 72:3439.CrossRefGoogle ScholarPubMed
Braunstein, S. L. and Kimble, H. J. (1998). Teleportation of continuous quantum variables. Phys. Rev. Lett., 80:869.CrossRefGoogle Scholar
Braunstein, S. L. and Pati, A. K., editors (2003). Quantum Information with Continuous Variables. Kluwer Academic Publishers.
Braunstein, S. L. and van Loock, P. (2005). Quantum information with continuous variables. Rev. Mod. Phys., 77:513.CrossRefGoogle Scholar
Braunstein, S. L., Caves, C. M., andMilburn, G. J. (1996). Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys., 247:135.CrossRefGoogle Scholar
Brennen, G. K., Caves, C. M., Jessen, P. S., and Deutsch, I. H. (1999). Quantum logic gates in optical lattices. Phys. Rev. Lett., 82:1060.CrossRefGoogle Scholar
Breuer, H.-P. and Petruccione, F. (2002). The Theory ofOpen Quantum Systems. Oxford University Press.Google Scholar
Briegel, H. J., Dür, W., Cirac, J. I., and Zoller, P. (1998). Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett., 81:5932.CrossRefGoogle Scholar
Brillouin, L. (1960). Wave Propagation and Group Velocity. Academic Press.Google Scholar
Brion, E., Molmer, K., and Saffman, M. (2007). Quantum computing with collective ensembles of multilevel systems. Phys. Rev. Lett., 99:260501.CrossRefGoogle ScholarPubMed
Brokmann, X., Coolen, L., Dahan, M., and Hermier, J. P. (2004). Measurement of the radiative and nonradiative decay rates of Single CdSe nanocrystals through a controlled modification of their spontaneous emission. Phys. Rev. Lett., 93:107403.CrossRefGoogle ScholarPubMed
Browne, D. E. and Rudolph, T. (2005). Resource-efficient linear optical quantum computation. Phys. Rev. Lett., 95:010501.CrossRefGoogle ScholarPubMed
Browne, D. E., Eisert, J., Scheel, S., and Plenio, M. B. (2003). Driving non-Gaussian to Gaussian states with linear optics. Phys. Rev. A, 67:062320.CrossRefGoogle Scholar
Browne, D. E., Plenio, M. B., and Huelga, S. F. (2003). Robust creation of entanglement between ions in spatially separate cavities. Phys. Rev. Lett., 91:067901.CrossRefGoogle ScholarPubMed
Brunei, C., Lounis, B., Tamarat, P., and Orrit, M. (1999). Triggered source of single photons based on controlled single molecule fluorescence. Phys. Rev. Lett., 83:2722.CrossRefGoogle Scholar
Bruß, D. and Leuchs, G., editors (2007). Lectures on Quantum Information. Wiley-VCH.Google Scholar
Burt, M. G. (1999). Fundamentals of envelope function theory for electronic states and photonic modes in nanostructures. J. Phys. Condens. Matter, 11:R53.CrossRefGoogle Scholar
Cable, H. and Dowling, J. P. (2007). Efficient generation of large number-path entanglement using only linear optics and feed-forward. Phys. Rev. Lett., 99:163604.CrossRefGoogle ScholarPubMed
Cabrillo, C., Cirac, J. I., García-Fernández, P., and Zoller, P. (1999). Creation of entangled states of distant atoms by interference. Phys. Rev. A, 59:1025.CrossRefGoogle Scholar
Calarco, T., Datta, A., Fedichev, P., Pazy, E., and Zoller, P. (2003). Spin-based all-optical quantum computing with quantum dots: understanding and suppressing decoherence. Phys. Rev. A, 68:012310.CrossRefGoogle Scholar
Carmichael, H. J. (1999). Statistical Methods in Quantum Optics: Master Equations and Fokker-Planck Equations. Springer-Verlag.CrossRefGoogle Scholar
Carroll, S. M. (2004). Spacetime and Geometry. Addison-Wesley.Google Scholar
Caves, C. M. (1981). Quantum-mechanical noise in an interferometer. Phys. Rev. D, 23:1693.CrossRefGoogle Scholar
Cerf, N. J., Adami, C., and Kwiat, P. G. (1998). Optical simulation of quantum logic. Phys. Rev. A, 57:R1477.CrossRefGoogle Scholar
Cerf, N. J., Leuchs, G., and Polzik, E. S. (2007). Quantum Information with Continuous Variables of Atoms and Light. Imperial College Press.CrossRefGoogle Scholar
Cerf, N. J., Lévy, M., and Assche, G. V. (2002). Quantum distribution of Gaussian keys using squeezed states. Phys. Rev. A, 63:052311.CrossRefGoogle Scholar
Dawson, C. M., Haselgrove, H. L., and Nielsen, M. A. (2006). Noise thresholds for optical cluster-state quantum computation. Phys. Rev. A, 73:052306.CrossRefGoogle Scholar
Demkowicz-Dobrzanski, R., Dorner, U., Smith, B. J., Lundeen, J. S., Wasilewski, W., Banaszek, K., and Walmsley, I. A. (2009). Quantum phase estimation with lossy interferometers. arXiv:0904.0456.Google Scholar
Dieks, D. (1982). Communication by EPR devices. Phys. Lett. A, 92:271.CrossRefGoogle Scholar
Divochiy, A., Marsili, F., Bitauld, D., Gaggero, A., Leoni, R., Mattioli, F., Korneev, A., Seleznev, V., Kaurova, N., Minaeva, O., Goltsman, G., Lagoudakis, K. G., Benkhaoul, M., Lévy, F., and Fiore, A. (2008). Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths. Nature Photonics, 2:302.
Duan, L.-M., Giedke, G., Cirac, J. I., and Zoller, P. (2000a). Entanglement purification of Gaussian continuous variable quantum states. Phys. Rev. Lett., 84:4002.CrossRefGoogle ScholarPubMed
Duan, L.-M., Giedke, G., Cirac, J. I., and Zoller, P. (2000b). Physical implementation for entanglement purification of Gaussian continuous-variable quantum states. Phys. Rev. A, 62:032304.CrossRefGoogle Scholar
Duan, L.-M., Lukin, M. D., Cirac, J. I., and Zoller, P. (2001). Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414:413.CrossRefGoogle ScholarPubMed
Eisert, J. (2005). Optimizing linear optics quantum gates. Phys. Rev. Lett., 95:040502.CrossRefGoogle ScholarPubMed
Eisert, J., Browne, D. E., Scheel, S., and Plenio, M. B. (2004). Distillation of continuous-variable entanglement with optical means. Ann. Phys., 311:431.CrossRefGoogle Scholar
Eisert, J., Scheel, S., and Plenio, M. B. (2002). Distilling Gaussian states with Gaussian operations is impossible. Phys. Rev. Lett., 89:137903.CrossRefGoogle ScholarPubMed
Ekert, A. K. (1991). Quantum cryptography based on Bell's theorem. Phys. Rev. Lett., 67:661.CrossRefGoogle ScholarPubMed
Enderlein, J. and Pampaloni, F. (2004). Unified operator approach for deriving Hermite- Gaussian and Laguerre-Gaussian laser modes. J. Opt. Soc. Am. A, 21:1553.CrossRefGoogle ScholarPubMed
Fitch, M. J., Jacobs, B. C., Pittman, T. B., and Franson, J. D. (2003). Photon-number resolution using time-multiplexed single-photon detectors. Phys. Rev. A, 68:043814.CrossRefGoogle Scholar
Fiurášek, J. (2002). Gaussian transformations and distillation of entangled Gaussian states. Phys. Rev. Lett., 89:137904.CrossRefGoogle ScholarPubMed
Fiurášek, J., Marek, P., Filip, R., and Schnabel, R. (2007). Experimentally feasible purification of continuous-variable entanglement. Phys. Rev. A, 75:050302.CrossRefGoogle Scholar
Fiurášek, J. L., Mišsta, J., and Filip, R. (2003). Entanglement concentration of continuous- variable states. Phys. Lett. A, 67:022304.Google Scholar
Flammia, S. T., Menicucci, N. C., and Pfister, O. (2009). The optical frequency comb as a one-way quantum computer. J. Phys. B, 42:114009.CrossRefGoogle Scholar
Fleischhauer, M. and Lukin, M. D. (2000). Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett., 84:5094.CrossRefGoogle ScholarPubMed
Fleischhauer, M. and Lukin, M. D. (2002). Quantum memory for photons: dark-state polaritons. Phys. Rev. A, 65:022314.CrossRefGoogle Scholar
Fleischhauer, M., Imamoglu, A., and Marangos, J. P. (2005). Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys., 77:633.CrossRefGoogle Scholar
Fox, A. M. (2006). Quantum Optics: An Introduction. Oxford University Press.Google Scholar
Franson, J. D., Jacobs, B. C., and Pittman, T. B. (2004). Quantum computing using single photons and the Zeno effect. Phys. Rev. A, 70:062302.CrossRefGoogle Scholar
Furusawa, A., Sørensen, J. L., Braunstein, S. L., Fuchs, C. A., Kimble, H. J., and Polzik, E. S. (1998). Unconditional quantum teleportation. Science, 282:706.CrossRefGoogle ScholarPubMed
Garrison, J. C. and Chiao, R. Y. (2008). Quantum Optics. Oxford University Press.CrossRefGoogle Scholar
Gauger, E. M., Benjamin, S. C., Nazir, A., and Lovett, B. W. (2008). High-fidelity all-optical control of quantum dot spins: detailed study of the adiabatic approach. Phys. Rev. B, 77:115322.CrossRefGoogle Scholar
Gerry, C. C. and Knight, P. L. (2005). Introductory Quantum Optics. Cambridge University Press.Google Scholar
Giedke, G. and Cirac, J. I. (2002). Characterization of Gaussian operations and distillation of Gaussian states. Phys. Rev. A, 66:032316.CrossRefGoogle Scholar
Gilchrist, A., Hayes, A. J. F., and Ralph, T. C. (2007). Efficient parity-encoded optical quantum computing. Phys. Rev. A, 75:052328.CrossRefGoogle Scholar
Giovannetti, V., Lloyd, S., and Maccone, L. (2003). The role of entanglement in dynamical evolution. Europhys. Lett., 62:615.CrossRefGoogle Scholar
Giovannetti, V., Lloyd, S., and Maccone, L. (2006). Quantum metrology. Phys. Rev. Lett., 96:010401.CrossRefGoogle ScholarPubMed
Goldstein, H. (1980). Classical Mechanics. Addison-Wesley.Google Scholar
Gottesman, D. (1996). Class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A, 54:1862.CrossRefGoogle ScholarPubMed
Gottesman, D. (1997). Stabilizer codes and quantum error correction. PhD thesis, California Institute of Technology.Google Scholar
Gottesman, D. and Chuang, I. L. (1999). Demonstrating the viability ofuniversal quantum computation using teleportation and single-qubit operations. Nature, 402:390.CrossRefGoogle Scholar
Gottesman, D. and Preskill, J. (2001). Secure quantum key distribution using squeezed states. Phys. Rev. A, 63:022309.CrossRefGoogle Scholar
Gottesman, D., Kitaev, A., and Preskill, J. (2001). Encoding a qubit in an oscillator. Phys. Rev. A, 64:012310.CrossRefGoogle Scholar
Grangier, P., Levenson, J. A., and Poizat, J. P. (1998). Quantum non-demolition measurements in optics. Nature, 396:537.CrossRefGoogle Scholar
Greilich, A., Yakovlev, D. R., Shabaev, A., Efros, A. L., Yugova, I.A., Oulton, R., Stavarache, V., Reuter, D., Wieck, A., and Bayer, M. (2006). Mode locking of electron spin coherences in singly charged quantum dots. Science, 313:341.CrossRefGoogle ScholarPubMed
Gross, D., Kieling, K., and Eisert, J. (2006). Potential and limits to cluster-state quantum computing using probabilistic gates. Phys. Rev. A, 74:042343.CrossRefGoogle Scholar
Gruber, A., Dräbenstedt, A., Tietz, C., Fleury, L., Wrachtrup, J., and von Borczyskowski, C. (1997). Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science, 276:2012.CrossRefGoogle Scholar
Gu, M., Weedbrook, C., Menicucci, N. C., Ralph, T. C., and van Loock, P. (2009). Quantum computing with continuous-variable clusters. arXiv:0903.3233.Google Scholar
Hafenbrak, R., Ulrich, S. M., Michler, P., Wang, L., Rastelli, A., and Schmidt, O. G. (2007). Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K. New J. Phys., 9:315.CrossRefGoogle Scholar
Harrison, P. (2005). Quantum Wells, Wires and Dots. Wiley-Interscience.CrossRefGoogle Scholar
Hayes, A. J. F., Gilchrist, A., and Ralph, T. C. (2008). Loss-tolerant operations in parity-code linear optics quantum computing. Phys. Rev. A, 77:012310.CrossRefGoogle Scholar
Heckenberg, N. R., McDuff, R., Smith, C. P., and White, A. G. (1992). Generation of optical phase singularities by computer-generated holograms. Opt. Lett., 17:221.CrossRefGoogle ScholarPubMed
Heersink, J., Marquardt, C., Dong, R., Filip, R., Lorenz, S., Leuchs, G., and Andersen, U. L. (2006). Distillation of squeezing from non-Gaussian quantum states. Phys. Rev. Lett., 96:253601.CrossRefGoogle ScholarPubMed
Hein, M., Eisert, J., and Briegel, H. J. (2004). Multiparty entanglement in graph states. Phys. Rev. A, 69:062311.CrossRefGoogle Scholar
Helstrom, C. W. (1976). Quantum Detection and Estimation Theory. Academic Press.Google Scholar
Hillery, M. (2000). Quantum cryptography with squeezed states. Phys. Rev. A, 61:022309.CrossRefGoogle Scholar
Hochstadt, H. (1971). The Functions ofMathematical Physics, volume XXIII of Pure and Applied Mathematics. Wiley-Interscience.Google Scholar
Hohenester, U. (2007). Quantum control of polaron states in semiconductor quantum dots. J. Phys. B, 40:S315.CrossRefGoogle Scholar
Holevo, A. S. (1982). Probabilistic and Statistical Aspects ofQuantum Theory. North- Holland Publishing Company.Google Scholar
Holevo, A. S. (2001). Statistical Structure ofQuantum Theory. Lecture notes in physics. Springer-Verlag.CrossRefGoogle Scholar
Holland, M. J. and Burnett, K. (1993). Interferometric detection of optical phase shifts at the Heisenberg limit. Phys. Rev. Lett., 71:1355.CrossRefGoogle ScholarPubMed
Huelga, S. F., Macchiavello, C., Pellizzari, T., Ekert, A. K., Plenio, M. B., and Cirac, J. I. (1997). Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett., 79:3865.CrossRefGoogle Scholar
Hwang, W.-Y. (2003). Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett., 91:057901.CrossRefGoogle ScholarPubMed
Imoto, N., Haus, H. A., and Yamamoto, Y. (1985). Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A, 32:2287.CrossRefGoogle ScholarPubMed
Jaksch, D., Briegel, H.-J., Cirac, J. I., Gardiner, C. W., and Zoller, P. (1999). Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett., 82:1975.CrossRefGoogle Scholar
Jaynes, E. T. (2003). Probability Theory, the Logic of Science. Cambridge University Press.CrossRefGoogle Scholar
Jelezko, F. and Wrachtrup, J. (2006). Single defect centres in diamond: a review. Phys. Stat. Sol. A, 203:3207.CrossRefGoogle Scholar
Jiang, L. A., Dauler, E. A., and Chang, J. T. (2007). Photon-number-resolving detector with 10 bits of resolution. Phys. Rev. A, 75:062325.CrossRefGoogle Scholar
Jozsa, R. (1994). Fidelity for mixed quantum states. J. Mod. Opt., 41:2315.CrossRefGoogle Scholar
Kasapi, A., Jain, M., Yin, G. Y., and Harris, S. E. (1995). Electromagnetically induced transparency: propagation dynamics. Phys. Rev. Lett., 74:2447.CrossRefGoogle ScholarPubMed
Kittel, C. (2005). Introduction to Solid State Physics, 8th Edition. Wiley.Google Scholar
Knill, E. (2003). Bounds on the probability of success of postselected nonlinear sign shifts implemented with linear optics. Phys. Rev. A, 68:064303.CrossRefGoogle Scholar
Knill, E., Laflamme, R., and Milburn, G. J. (2001). A scheme for efficient quantum computation with linear optics. Nature, 409:46.CrossRefGoogle ScholarPubMed
Kogelnik, H. and Li, T. (1966). Laser beams and resonators. Appl. Opt., 5:1550.CrossRefGoogle ScholarPubMed
Kok, P. and Braunstein, S. L. (2000). Post-selected versus non-post-selected quantum teleportation using parametric down-conversion. Phys. Rev. A, 61:042304.CrossRefGoogle Scholar
Kok, P. and Braunstein, S. L. (2001). Detection devices in entanglement-based optical state preparation. Phys. Rev. A, 63:033812.CrossRefGoogle Scholar
Kok, P., Lee, H., and Dowling, J. P. (2002a). The creation of large photon-number path entanglement conditioned on photodetection. Phys. Rev. A, 65:052104.CrossRefGoogle Scholar
Kok, P., Lee, H., and Dowling, J. P. (2002b). Single-photon quantum nondemolition detectors constructed with linear optics and projective measurements. Phys. Rev. A, 66:063814.CrossRefGoogle Scholar
Kok, P., Munro, W. J., Nemoto, K., Ralph, T. C., Dowling, J. P., and Milburn, G. J. (2007). Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 79:135.CrossRefGoogle Scholar
Kraus, K. (1983). States, Effects and Operations: Fundamental Notions of Quantum Theory. Springer-Verlag.CrossRefGoogle Scholar
Kraus, B., Hammerer, K., Giedke, G., and Cirac, J. I. (2003). Entanglement generation and Hamiltonian simulation in continuous-variable systems. Phys. Rev. A, 67:042314.CrossRefGoogle Scholar
Kuzmany, H. (1998). Solid State Spectroscopy. Springer-Verlag.CrossRefGoogle Scholar
Kuzmich, A., Bowen, W. P., Boozer, A. D., Boca, A., Chou, C. W., Duan, L.-M., and Kimble, H. J. (2003). Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature, 423:731.CrossRefGoogle ScholarPubMed
Kwiat, P. G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A. V., and Shih, Y. (1995). New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett., 75:4337.CrossRefGoogle ScholarPubMed
Langford, N. K., Dalton, R. B., Harvey, M. D., O'Brien, J. L., Pryde, G. J., Gilchrist, A., Bartlett, S. D., and White, A. G. (2004). Measuring entangled qutrits and their use for quantum bit commitment. Phys. Rev. Lett., 93:053601.CrossRefGoogle ScholarPubMed
Lapaire, G. G., Kok, P., Dowling, J. P., and Sipe, J. E. (2003). Conditional linear-optical measurement schemes generate effective photon nonlinearities. Phys. Rev. A, 68:042314.CrossRefGoogle Scholar
Leach, J., Courtial, J., Skeldon, K., Barnett, S. M., Franke-Arnold, S., and Padgett, M. J. (2004). Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. Phys. Rev. Lett., 92:013601.CrossRefGoogle ScholarPubMed
Leach, J., Padgett, M. J., Barnett, S. M., Franke-Arnold, S., and Courtial, J. (2002). Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett., 88:257901.CrossRefGoogle ScholarPubMed
Leggett, A. J., Chakravarty, S., Dorsey, A. T., Fisher, M. P., Garg, A., and Zwerger, W. (1987). Dynamics of the dissipative two-state system. Rev. Mod. Phys., 59:1.CrossRefGoogle Scholar
Leonhardt, U. (1997). Measuring the Quantum State of Light. Cambridge Studies in Modern Optics. Cambridge University Press.Google Scholar
Leung, P. M. and Ralph, T. C. (2007). Optical Zeno gate: bounds for fault-tolerant operation. New J. Phys., 9:224.CrossRefGoogle Scholar
Levitin, L. B. and Toffoli, T. (2009). The fundamental limitonthe rate of quantum dynamics: the unified bound is tight. arXiv:0905.3417.Google ScholarPubMed
Lim, Y. L., Barrett, S. D., Beige, A., Kok, P., and Kwek, L. C. (2006). Repeat-until-success quantum computing using stationary and flying qubits. Phys. Rev. A, 73:012304.CrossRefGoogle Scholar
Lim, Y. L., Beige, A., and Kwek, L. C. (2005). Repeat-until-success linear optics distributed quantum computing. Phys. Rev. Lett., 95:030505.CrossRefGoogle ScholarPubMed
Lindblad, G. (1976). On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48(2):119-130.CrossRefGoogle Scholar
Lloyd, S. (1993). A potentially realizable quantum computer. Science, 261:1569.CrossRefGoogle ScholarPubMed
Lloyd, S. and Braunstein, S. L. (1999). Quantum computation over continuous variables. Phys. Rev. Lett., 82:1784.CrossRefGoogle Scholar
Lloyd, S. and Slotine, J. J. E. (1998). Analog quantum error correction. Phys. Rev. Lett., 80:4088.CrossRefGoogle Scholar
Lodewyck, J., Debuisschert, T., Garcá-Patrón, R., Tualle-Brouri, R., Cerf, N. J., and Grangier, P. (2007). Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system. Phys. Rev. Lett., 98:030503.CrossRefGoogle ScholarPubMed
Lo, H. and Chau, H. F. (1999). Unconditional security of quantum key distribution over arbitrarily long distances. Science, 283:2050.CrossRefGoogle ScholarPubMed
Lo, H., Ma, X., and Chen, K. (2005). Decoy state quantum key distribution. Phys. Rev. Lett., 94:230504.CrossRefGoogle ScholarPubMed
Lounis, B. and Moerner, W. E. (2000). Single photons on demand from a single molecule at room temperature. Nature, 407:491.CrossRefGoogle ScholarPubMed
Lounis, B. and Orrit, M. (2005). Single photon sources. Rep. Prog. Phys., 68:1129.CrossRefGoogle Scholar
Lounis, B., Bechtel, H. A., Gerion, D., Alivisatos, P., and Moerner, W. E. (2000). Photon antibunching in single CdSe/ZnS quantum dot fluorescence. Chem. Phys. Lett., 329:399.CrossRefGoogle Scholar
Lovett, B. W., Reina, J. H., Nazir, A., and Briggs, G. A. D. (2003). Optical schemes for quantum computation in quantum dot molecules. Phys. Rev. B, 68:205319.CrossRefGoogle Scholar
Lukin, M. D. (2003). Colloquium: trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys., 75:457.CrossRefGoogle Scholar
Lukin, M. D., Fleischhauer, M., Cote, R., Duan, L. M., Jaksch, D., Cirac, J. I., and Zoller, P. (2001). Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett., 87:037901.CrossRefGoogle ScholarPubMed
Lütkenhaus, N., Calsamiglia, J., and Suominen, K. A. (1999). Bell measurements for teleportation. Phys. Rev. A, 59:3295.CrossRefGoogle Scholar
Mahan, G. D. (2000). Many Particle Physics, Third Edition. Kluwer.CrossRefGoogle Scholar
Mandelstam, L. and Tamm, I. (1945). The uncertainty relation between energy and time in non-relativistic quantum mechanics. J. Phys. (USSR), 9:249.Google Scholar
Margolus, N. and Levitin, L. B. (1998). The maximum speed ofdynamical evolution. Phys. D, 120:188.Google Scholar
McKeever, J., Boca, A., Boozer, A. D., Miller, R., Buck, J. R., Kuzmich, A., and Kimble, H. J. (2004). Deterministic generation of single photons from one atom trapped in a cavity. Science, 303:1992.CrossRefGoogle ScholarPubMed
Menicucci, N. C., van Loock, P., Gu, M., Weedbrook, C., Ralph, T. C., and Nielsen, M. A. (2006). Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett., 97:110501.CrossRefGoogle ScholarPubMed
Mermin, N. D. (2007). Quantum Computer Science. Cambridge University Press.CrossRefGoogle Scholar
Metz, J., Trupke, M., and Beige, A. (2006). Robust entanglement through macroscopic quantum jumps. Phys. Rev. Lett., 97:040503.CrossRefGoogle ScholarPubMed
Moehring, D. L., Maunz, P., Olmschenk, S., Younge, K. C., Matsukevich, D. N., Duan, L. M., and Monroe, C. (2007). Entanglement of single-atom quantum bits at a distance. Nature, 449:68.CrossRefGoogle ScholarPubMed
Munro, W. J., Nemoto, K., and Spiller, T. P. (2005). Weak nonlinearities: a new route to optical quantum computation. New J. Phys., 7:137.CrossRefGoogle Scholar
Myers, C. R. and Laflamme, R. (2005). Linear optics quantum computation: an overview. In Quantum Computers, Algorithms and Chaos. International School of Physics ‘Enrico Fermi’.Google Scholar
Myers, H. P. (1997). Introductory Solid State Physics. CRC Press.CrossRefGoogle Scholar
Nazir, A., Lovett, B. W., Barrett, S. D., Spiller, T. P., and Briggs, G. A. D. (2004a). Selective spin coupling through a single exciton. Phys. Rev. A, 93: 150502.Google ScholarPubMed
Nazir, A., Lovett, B. W., and Briggs, G. A. D. (2004b). Creating excitonic entanglement in quantum dots through the optical Stark effect. Phys. Rev. A, 70:052301.CrossRefGoogle Scholar
Nielsen, M. A. (2004). Optical quantum computation using cluster states. Phys. Rev. Lett., 93:040503.CrossRefGoogle ScholarPubMed
Nielsen, M. A. (2006). Cluster-state quantum computation. Rep. Math. Phys., 57:147.CrossRefGoogle Scholar
Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum Information. Cambridge University Press.Google Scholar
Niset, J., Fiurášsek, J., and Cerf, N. J. (2009). No-go theorem for Gaussian quantum error correction. Phys. Rev. Lett., 102:120501.CrossRefGoogle ScholarPubMed
Nogues, G., Rauschenbeutel, A., Osnaghi, S., Brune, M., Raimond, J. M., and Haroche, S. (1999). Seeing a single photon without destroying it. Nature, 400:239.CrossRefGoogle Scholar
O'Brien, J. L., Pryde, G. J., White, A. G, Ralph, T. C., and Branning, D. (2003). Demonstration of an all-optical quantum controlled-NOT gate. Nature, 426:264.CrossRefGoogle ScholarPubMed
Pan, J. W., Bouwmeester, D., Weinfurter, H., and Zeilinger, A. (1998). Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett., 80:3891.CrossRefGoogle Scholar
Parker, S., Bose, S., and Plenio, M. B. (2000). Entanglement quantification and purification in continuous-variable systems. Phys. Rev. A, 61:032305.CrossRefGoogle Scholar
Pazy, E., Biolatti, E., Calarco, T., D'Amico, I., Zanardi, P., Rossi, F., and Zoller, P. (2003). Spin-based optical quantum computation via Pauli blocking in semiconductor quantum dots. Europhys. Lett., 62:175.CrossRefGoogle Scholar
Perelomov, A. (1986). Generalized Coherent States and Their Applications. Springer-Verlag.CrossRefGoogle Scholar
Pezzé, L. and Smerzi, A. (2008). Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed vacuum light. Phys. Rev. Lett., 100:073601.CrossRefGoogle ScholarPubMed
Pirandola, S., Mancini, S., Vitali, D., and Tombesi, P. (2004). Constructing finite- dimensional codes with optical continuous variables. Europhys. Lett., 68:323.CrossRefGoogle Scholar
Pittman, T. B., Jacobs, B. C., and Franson, J. D. (2001). Probabilistic quantum logic operations using polarizing beam splitters. Phys. Rev. A, 64:062311.CrossRefGoogle Scholar
Pittman, T. B., Jacobs, B. C., and Franson, J. D. (2002). Single photons on pseudodemand from stored parametric down-conversion. Phys. Rev. A, 66:042303.CrossRefGoogle Scholar
Plenio, M. B. and Virmani, S. (2007). An introduction to entanglement measures. Quant. Inf. Comp., 7:1.Google Scholar
Ralph, T. C. (2000). Continuous variable quantum cryptography. Phys. Rev. A, 61:010303(R).CrossRefGoogle Scholar
Ralph, T. C., White, A. G., Munro, W. J., and Milburn, G. J. (2002a). Simple scheme for efficient linear optics quantum gates. Phys. Rev. A, 65:012314.CrossRefGoogle Scholar
Ralph, T. C., Langford, N. K., Bell, T. B., and White, A. G. (2002b). Linearoptical controlled-NOT gate in the coincidence basis. Phys. Rev. A, 65:062324.CrossRefGoogle Scholar
Raussendorf, R. and Briegel, H. J. (2001). A one-way quantum computer. Phys. Rev. Lett., 86:5188.CrossRefGoogle ScholarPubMed
Raussendorf, R. and Harrington, J. (2007). Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett., 98:190504.CrossRefGoogle ScholarPubMed
Raussendorf, R., Browne, D. E., and Briegel, H. J. (2003). Measurement-based quantum computation on cluster states. Phys. Rev. A, 68:022312.CrossRefGoogle Scholar
Raussendorf, R., Harrington, J., and Goyal, K. (2006). A fault-tolerant one-way quantum computer. Ann. Phys., 321:2242.CrossRefGoogle Scholar
Raussendorf, R., Harrington, J., and Goyal, K. (2007). Topological fault-tolerance in cluster state quantum computation. New J. Phys., 9:199.CrossRefGoogle Scholar
Reck, M., Zeilinger, A., Bernstein, H. J., and Bertani, P. (1994). Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 73:58.CrossRefGoogle ScholarPubMed
Riebe, M., Häffner, H., Roos, C. F., Hänsel, W., Benhelm, J., Lancaster, G. P. T., Körber, T. W., Becher, C., Schmidt-Kaler, F., James, D. F. V., and Blatt, R. (2004). Deterministic quantum teleportation with atoms. Nature, 429:734.CrossRefGoogle ScholarPubMed
Rogers, L. J., Armstrong, S., Sellars, M. J., and Manson, N. B. (2008). New infrared emission of the NV centre in diamond: Zeeman and uniaxial stress studies. arXiv:0806.0895.Google Scholar
Rosenberg, D., Lita, A. E., Miller, A. J., and Nam, S. W. (2005). Noise-free high-efficiency photon-number-resolving detectors. Phys. Rev. A, 71:061803.CrossRefGoogle Scholar
Rudolph, T. and Pan, J. W. (2001). A simple gate for linear optics quantum computing. ArXiv:quant-ph/0108056.Google Scholar
Santori, C., Vatal, D., Vuckovic, J., Salomon, G. S., and Yamamoto, Y. (2002). Indistinguishable photons from a single-photon device. Nature, 419:594.CrossRefGoogle ScholarPubMed
Scheel, S. and Liitkenhaus, N. (2004). Upper bounds on success probabilities in linear optics. New J. Phys., 6:51.CrossRefGoogle Scholar
Scheel, S., Munro, W. J., Eisert, J., Nemoto, K., and Kok, P. (2006). Feed-forward and its role in conditional linear optical quantum dynamics. Phys. Rev. A, 73:034301.CrossRefGoogle Scholar
Scheel, S., Nemoto, K., Munro, W. J., and Knight, P. L. (2003). Measurement-induced nonlinearity in linear optics. Phys. Rev. A, 68:032310.CrossRefGoogle Scholar
Shapiro, J. H. (2006). Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A, 73:062305.CrossRefGoogle Scholar
Shapiro, J. H. and Razavi, M. (2007). Continuous-time cross-phase modulation and quantum computation. New J. Phys., 9:16.CrossRefGoogle Scholar
Shor, P. W. and Preskill, J. (2000). Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett., 85:441.CrossRefGoogle ScholarPubMed
Steane, A. M. (2003). Overhead and noise threshold of fault-tolerant quantum error correction. Phys. Rev. A, 68:042322.CrossRefGoogle Scholar
Stevenson, R. M., Young, R. J., Atkinson, P., Cooper, K., Ritchie, D. A., and Shields, A. J. (2006). A semiconductor source of triggered entangled photon pairs. Nature, 439:179.CrossRefGoogle ScholarPubMed
Stoneham, A. M. (1975). Theory of Defects in Solids. Oxford University Press.Google Scholar
Stoneham, A. M., Fisher, A. J., and Greenland, P. T. (2003). Optically driven silicon-based quantum gates with potential for high-temperature operation. J. Phys. Condens. Matter, 15:L447.CrossRefGoogle Scholar
Thé, G. A. P. and Ramos, R. V. (2007). Multiple-photon number-resolving detector using fiber ring and single-photon detector. J. Mod. Opt., 54:1187.CrossRefGoogle Scholar
Treussart, F., Alléaume, R., Le Floc'h, V., Xiao, L. T., Courty, J. M., and Roch, J. F. (2002). Direct measurement of the photon statistics of a triggered single photon source. Phys. Rev. Lett., 89:093601.CrossRefGoogle ScholarPubMed
Troiani, F., Hohenester, U., and Molinari, E. (2000) Exploiting exciton-exciton interactions in semiconductor quantum dots for quantum-information processing. Phys. Rev. B, 62:R2263.CrossRefGoogle Scholar
Truax, D. R. (1985). Baker-Campbell-Hausdorff relations and unitarity of SU(2) and SU(1,1) squeeze operators. Phys. Rev. D, 31:1988.CrossRefGoogle ScholarPubMed
Ulu, G., Sergienko, A. V., and Ünlü, M. S. (2000). Influence of hot-carrier luminescence from avalanche photodiodes on time-correlated photon detection. Optics Letters, 25:758.CrossRefGoogle ScholarPubMed
Vaidman, L. and Yoran, N. (1999). Methods for reliable teleportation. Phys. Rev. A, 59:116.CrossRefGoogle Scholar
van Enk, S. J. and Nienhuis, G. (1992). Eigenfunction description of laser beams and orbital angular momentum of light. Opt. Commun., 94:147.CrossRefGoogle Scholar
vanLoock, P. (2007). Examples of Gaussian cluster computation. J. Opt. Soc.Am. B, 24:340.Google Scholar
van Loock, P. and Braunstein, S. L. (2000). Unconditional teleportation of continuous- variable entanglement. Phys. Rev. A, 61:010302(R).CrossRefGoogle Scholar
van Loock, P. and Liitkenhaus, N. (2004). Simple criteria for the implementation of projective measurements with linear optics. Phys. Rev. A, 69:012302.CrossRefGoogle Scholar
van Loock, P., Weedbrook, C., and Gu, M. (2007). Building Gaussian cluster states by linear optics. Phys. Rev. A, 76:032321.CrossRefGoogle Scholar
Varnava, M., Browne, D. E., and Rudolph, T. (2006). Loss tolerance in one-way quantum computation via counterfactual error correction. Phys. Rev. Lett., 97:120501.CrossRefGoogle ScholarPubMed
Waks, E., Diamanti, E., Sanders, B. C., Bartlett, S. D., and Yamamoto, Y. (2004). Direct observation of nonclassical photon statistics in parametric down-conversion. Phys. Rev. Lett., 92:113602.CrossRefGoogle ScholarPubMed
Waks, E., Inoue, K., Oliver, W. D., Diamanti, E., and Yamamoto, Y. (2003). High-efficiency photon-number detection for quantum information processing. IEEE J. Sel. Top. Quant., 9:1502.CrossRefGoogle Scholar
Walls, D.andMilburn, G. J. (2008). Quantum Optics. Second edition. Springer.Google Scholar
Walther, P., Resch, K. J., Rudolph, T., Weinfurter, H., Vedral, V., Aspelmeyer, M., and Zeilinger, A. (2005). Experimental one-way quantum computing. Nature, 434:169.CrossRefGoogle ScholarPubMed
Weinreich, G. (1998). Geometrical Vectors. Chicago Lecture in Physics. University of Chicago Press.Google Scholar
Weiss, U. (2008). Quantum Dissipative Systems, Third Edition. World Scientific.CrossRefGoogle Scholar
Wootters, W. K. (1981). Statistical distance and Hilbert space. Phys. Rev. D, 23:357.CrossRefGoogle Scholar
Wootters, W. K. and Zurek, W. H. (1982). A single quantum cannot be cloned. Nature, 299:802.CrossRefGoogle Scholar
Yoran, N. and Reznik, B. (2003). Deterministic linear optics quantum computation with single photon qubits. Phys. Rev. Lett., 91:037903.CrossRefGoogle ScholarPubMed
Yurke, B., McCall, S. L., and Klauder, J. R. (1986). SU(2) and SU(1,1) interferometers. Phys. Rev. A, 33:4033.CrossRefGoogle ScholarPubMed
Zambra, G., Bondani, M., Spinelli, A. S., Paleari, F., and Andreoni, A. (2004). Counting photoelectrons in the response of a photomultiplier tube to single picosecond light pulses. Rev. Sci. Instrum., 75:2762.CrossRefGoogle Scholar
Zanardi, P. and Rasetti, M. (1997). Noiseless quantum codes. Phys. Rev. Lett., 79:3306.CrossRefGoogle Scholar
Zhang, J. (2008a). Graphical description of local Gaussian operations for continuous- variable weighted graph state. Phys. Rev. A, 78:052307.CrossRefGoogle Scholar
Zhang, J. (2008b). Local complementation rule for continuous variable four-mode unweighted graph states. Phys. Rev. A, 78:034301.CrossRefGoogle Scholar
Zhang, J. and Braunstein, S. L. (2006). Continuous-variable Gaussian analog of cluster states. Phys. Rev. A, 73:032318.CrossRefGoogle Scholar
Zhang, L., Silberhorn, C., and Walmsley, I. A. (2008). Secure quantum key distribution using continuous variables of single photons. Phys. Rev. Lett., 100:110504.CrossRefGoogle ScholarPubMed
Ziman, J. M. (1969). Elements of Advanced Quantum Theory. Cambridge University Press.Google Scholar
Ziman, J. M. (2001). Electrons and Phonons, Oxford Classic. Oxford University Press.CrossRefGoogle Scholar
Zou, X. and Mathis, W. (2005). Scheme for optical implementation of orbital angular momentum beam splitter of a light beam and its application in quantum information processing. Phys. Rev. A, 71:042324.CrossRefGoogle Scholar
Zwierz, M. and Kok, P. (2009). High-efficiency cluster-state generation with atomic ensembles via the dipole-blockade mechanism. Phys. Rev. A, 79:022304.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Pieter Kok, University of Sheffield, Brendon W. Lovett, Heriot-Watt University, Edinburgh
  • Book: Introduction to Optical Quantum Information Processing
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139193658.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Pieter Kok, University of Sheffield, Brendon W. Lovett, Heriot-Watt University, Edinburgh
  • Book: Introduction to Optical Quantum Information Processing
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139193658.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Pieter Kok, University of Sheffield, Brendon W. Lovett, Heriot-Watt University, Edinburgh
  • Book: Introduction to Optical Quantum Information Processing
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139193658.018
Available formats
×