Published online by Cambridge University Press: 05 June 2012
This book is a detailed introduction to the theory of finite type (Vassiliev) knot invariants, with a stress on its combinatorial aspects. It is intended to serve both as a textbook for readers with no or little background in this area, and as a guide to some of the more advanced material. Our aim is to lead the reader to understanding by means of pictures and calculations, and for this reason we often prefer to convey the idea of the proof on an instructive example rather than give a complete argument. While we have made an effort to make the text reasonably self-contained, an advanced reader is sometimes referred to the original papers for the technical details of the proofs.
Historical remarks
The notion of a finite type knot invariant was introduced by Victor Vassiliev (Moscow) in the end of the 1980s and first appeared in print in his paper (1990a). Vassiliev, at the time, was not specifically interested in low-dimensional topology. His main concern was the general theory of discriminants in the spaces of smooth maps, and his description of the space of knots was just one, though the most spectacular, application of a machinery that worked in many seemingly unrelated contexts. It was V. I. Arnold (1992) who understood the importance of finite type invariants, coined the name “Vassiliev invariants” and popularized the concept; since that time, the term “Vassiliev invariants” has become standard.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.