Learning Outcomes
In this chapter, you will learn how to
Explain the defining characteristics of various types of stochastic processes
Identify the appropriate time series model for a given data series
Produce forecasts for ARMA and exponential smoothing models
Evaluate the accuracy of predictions using various metrics
Estimate time series models and produce forecasts from them in EViews
Introduction
Univariate time series models are a class of specifications where one attempts to model and to predict financial variables using only information contained in their own past values and possibly current and past values of an error term. This practice can be contrasted with structural models, which are multivariate in nature, and attempt to explain changes in a variable by reference to the movements in the current or past values of other (explanatory) variables. Time series models are usually a-theoretical, implying that their construction and use is not based upon any underlying theoretical model of the behaviour of a variable. Instead, time series models are an attempt to capture empirically relevant features of the observed data that may have arisen from a variety of different (but unspecified) structural models. An important class of time series models is the family of AutoRegressive Integrated Moving Average (ARIMA) models, usually associated with Box and Jenkins (1976). Time series models may be useful when a structural model is inappropriate. For example, suppose that there is some variable yt whose movements a researcher wishes to explain.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.