Published online by Cambridge University Press: 30 May 2025
We review a resistor network approach to the numerical solution of the inverse problem of electrical impedance tomography (EIT). The networks arise in the context of finite volume discretizations of the elliptic equation for the electric potential, on sparse and adaptively refined grids that we call optimal. The name refers to the fact that the grids give spectrally accurate approximations of the Dirichlet to Neumann map, the data in EIT. The fundamental feature of the optimal grids in inversion is that they connect the discrete inverse problem for resistor networks to the continuum EIT problem.
We consider the inverse problem of electrical impedance tomography (EIT) in two dimensions [Borcea 2002]. It seeks the scalar valued positive and bounded conductivity σ(x), the coefficient in the elliptic partial differential equation for the potential u ∊ H1(Ω),
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.