Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T06:15:55.408Z Has data issue: false hasContentIssue false

6 - Arborescence and rooted connectivity

Published online by Cambridge University Press:  05 June 2012

Lap Chi Lau
Affiliation:
The Chinese University of Hong Kong
R. Ravi
Affiliation:
Carnegie Mellon University, Pennsylvania
Mohit Singh
Affiliation:
McGill University, Montréal
Get access

Summary

In this chapter we study problems in directed graphs and see how the techniques developed in previous chapters generalize to problems on directed graphs. We first consider exact formulations for the arborescence problem and a vertex connectivity problem in directed graphs. For the latter, we demonstrate the iterative method in the more sophisticated uncrossing context which is applied to biset families instead of set families as in previous chapters. We then extend these results to degree bounded variants of the problems and use the iterative method to obtain bicriteria results unlike previous chapters where the algorithm would be optimal on the cost and only violate the degree constraints.

Given a directed graph D = (V, A) and a root vertex rV, a spanning r-arborescence is a subgraph of D so that there is a directed path from r to every vertex in Vr. The minimum spanning arborescence problem is to find a spanning r-arborescence with minimum total cost. We will show an integral characterization using iterative proofs, and extend this result in two directions. Given a directed graph D and a root vertex r, a rooted k-connected subgraph is a subgraph of D so that there are k internally vertex-disjoint directed paths from r to every vertex in Vr. The minimum rooted k-connected subgraph problem is to find a rooted k-connected subgraph with minimum total cost. We extend the proofs in the minimum arborescence problem to show an integral characterization in this more general setting.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Arborescence and rooted connectivity
  • Lap Chi Lau, The Chinese University of Hong Kong, R. Ravi, Carnegie Mellon University, Pennsylvania, Mohit Singh, McGill University, Montréal
  • Book: Iterative Methods in Combinatorial Optimization
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977152.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Arborescence and rooted connectivity
  • Lap Chi Lau, The Chinese University of Hong Kong, R. Ravi, Carnegie Mellon University, Pennsylvania, Mohit Singh, McGill University, Montréal
  • Book: Iterative Methods in Combinatorial Optimization
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977152.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Arborescence and rooted connectivity
  • Lap Chi Lau, The Chinese University of Hong Kong, R. Ravi, Carnegie Mellon University, Pennsylvania, Mohit Singh, McGill University, Montréal
  • Book: Iterative Methods in Combinatorial Optimization
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977152.007
Available formats
×