Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T14:21:46.718Z Has data issue: false hasContentIssue false

8 - Network matrices

Published online by Cambridge University Press:  05 June 2012

Lap Chi Lau
Affiliation:
The Chinese University of Hong Kong
R. Ravi
Affiliation:
Carnegie Mellon University, Pennsylvania
Mohit Singh
Affiliation:
McGill University, Montréal
Get access

Summary

In this chapter, we consider a simple model, based on a directed tree representation of the variables and constraints, called network matrices. We show how this model as well as its dual have integral optima when used as constraint matrices with integral right-hand sides. Finally, we show the applications of these models, especially in proving the integrality of the dual of the matroid intersection problem in Chapter 5, as well as the dual of the submodular flow problem in Chapter 7.

While our treatment of network matrices is based on its relations to uncrossed structures and their representations, they play a crucial role in the characterization of totally unimodular matrices, which are all constraint matrices that yield integral polytopes when used as constraint matrices with integral right-hand sides [121]. Note that total unimodularity of network matrices automatically implies integrality of the dual program when the right-hand sides of the dual are integral.

The integrality of the dual of the matroid intersection and submodular flow polyhedra can be alternately derived by showing the Total Dual Integrality of these systems [121]. Although our proof of these facts uses iterative rounding directly on the dual, there is a close connection between these two lines of proof since both use the underlying structure on span of the constraints defining the extreme points of the corresponding linear program.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Network matrices
  • Lap Chi Lau, The Chinese University of Hong Kong, R. Ravi, Carnegie Mellon University, Pennsylvania, Mohit Singh, McGill University, Montréal
  • Book: Iterative Methods in Combinatorial Optimization
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977152.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Network matrices
  • Lap Chi Lau, The Chinese University of Hong Kong, R. Ravi, Carnegie Mellon University, Pennsylvania, Mohit Singh, McGill University, Montréal
  • Book: Iterative Methods in Combinatorial Optimization
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977152.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Network matrices
  • Lap Chi Lau, The Chinese University of Hong Kong, R. Ravi, Carnegie Mellon University, Pennsylvania, Mohit Singh, McGill University, Montréal
  • Book: Iterative Methods in Combinatorial Optimization
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977152.009
Available formats
×