Skip to main content Accessibility help
×
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 9
  • Cited by
    This chapter has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Pánek, Tomáš Hartvich, Filip Jankovská, Vlasta Klimeš, Jan Tábořík, Petr Bubík, Miroslav Smolková, Veronika and Hradecký, Jan 2014. Large Late Pleistocene landslides from the marginal slope of the Flysch Carpathians. Landslides, Vol. 11, Issue. 6, p. 981.

    Esposito, Carlo Di Luzio, Emiliano Scarascia Mugnozza, Gabriele and Bianchi Fasani, Gianluca 2014. Mutual interactions between slope-scale gravitational processes and morpho-structural evolution of central Apennines (Italy): review of some selected case histories. Rendiconti Lincei, Vol. 25, Issue. S2, p. 151.

    Hermanns, Reginald L. Fauqué, Luis and Wilson, Carlos G. J. 2015. 36Cl terrestrial cosmogenic nuclide dating suggests Late Pleistocene to Early Holocene mass movements on the south face of Aconcagua mountain and in the Las Cuevas–Horcones valleys, Central Andes, Argentina. Geological Society, London, Special Publications, Vol. 399, Issue. 1, p. 345.

    Pánek, Tomáš 2015. Recent progress in landslide dating. Progress in Physical Geography, Vol. 39, Issue. 2, p. 168.

    Hermanns, Reginald L. Schleier, Markus Böhme, Martina Blikra, Lars Harald Gosse, John Ivy-Ochs, Susan and Hilger, Paula 2017. Advancing Culture of Living with Landslides. p. 331.

    Giles, D. P. Griffiths, J. S. Evans, D. J. A. and Murton, J. B. 2017. Chapter 3 Geomorphological framework: glacial and periglacial sediments, structures and landforms. Geological Society, London, Engineering Geology Special Publications, Vol. 28, Issue. 1, p. 59.

    Hilger, Paula Hermanns, Reginald L Gosse, John C Jacobs, Benjamin Etzelmüller, Bernd and Krautblatter, Michael 2018. Multiple rock-slope failures from Mannen in Romsdal Valley, western Norway, revealed from Quaternary geological mapping and 10Be exposure dating. The Holocene, Vol. 28, Issue. 12, p. 1841.

    Matthews, John A. Winkler, Stefan Wilson, Peter Tomkins, Matt D. Dortch, Jason M. Mourne, Richard W. Hill, Jennifer L. Owen, Geraint and Vater, Amber E. 2018. Small rock-slope failures conditioned by Holocene permafrost degradation: a new approach and conceptual model based on Schmidt-hammer exposure-age dating, Jotunheimen, southern Norway. Boreas, Vol. 47, Issue. 4, p. 1144.

    Glas, Robin Lautz, Laura McKenzie, Jeffrey Mark, Bryan Baraer, Michel Chavez, Daniel and Maharaj, Laura 2018. A review of the current state of knowledge of proglacial hydrogeology in the Cordillera Blanca, Peru. Wiley Interdisciplinary Reviews: Water, Vol. 5, Issue. 5, p. e1299.

    ×
  • Print publication year: 2012
  • Online publication date: May 2013

6 - Rapid rock-slope failures

Summary

Our life is short. The memory of mankind as a whole is poor. The few mountain collapses that we experience in our lifetime leave us with the impression that these collapses are very exceptional, extraordinary events. However, that is not the case. Mountain collapses are normal events in the mountains, especially in the high mountains, where they have an important natural role to play in helping to form and shape the mountains; a process that continues relentlessly and steadily. In the mountains we have to expect mountain collapses from time to time, from place to place.

(A. Heim, 1932)

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Landslides
  • Online ISBN: 9780511740367
  • Book DOI: https://doi.org/10.1017/CBO9780511740367
Please enter your name
Please enter a valid email address
Who would you like to send this to *
×

References

Aa, A.R., Sjåstad, J., Sønstegaard, E. and Blikra, L.H. (2007). Chronology of Holocene rock-avalanche deposits based on Schmidt-hammer, relative dating and dust stratigraphy in nearby bog deposits, Vora, inner Nordfjord, Norway. Holocene, 17, 955–964.
Abele, G. (1974). Bergstürze in den Alpen: Ihre Verbreitung, Morphologie und Folgeerscheinungen. Munich: Deutscher und Österreichischer Alpenverein.
Abele, G. (1997). Rockslide movement supported by the mobilization of groundwater-saturated valley floor sediments. Zeitschrift für Geomorphologie, 41, 1–20.
Adams, J. (1981). Earthquake-dammed lakes in New Zealand. Geology, 9, 215–219.
Ballantyne, C.K. (1997). Periglacial trimlines in the Scottish Highlands. Quaternary International, 38–39, 119–136.
Ballantyne, C.K., Stone, J.O. and Fifield, L.K. (1998). Cosmogenic Cl-36 dating of postglacial landsliding at the Storr, Isle of Skye, Scotland. Holocene, 8, 347–351.
Blikra, L.H., Longva, O., Braathen, A.et al. (2006). Rock slope failures in Norwegian fjord areas: Examples, spatial distribution and temporal patterns. In Landslides from Massive Rock Slope Failure. Proceedings of the NATO Advanced Research Workshop on Massive Rock Slope Failure: New Models for Hazard Assessment, Celano, Italy, 16–21 June 2002, ed. S.G. Evans, G. Scarascia Mugnozza, A. Strom and R.L. Hermanns. NATO Science Series IV, Earth and Environmental Sciences 49. Dordrecht, Netherlands: Springer, pp. 475–496.
Bøe, R., Longva, O., Lepland, A.et al. (2004). Postglacial mass movements and their causes in fjords and lakes in western Norway. Norwegian Journal of Geology, 84, 35–55.
Bookhagen, B., Thiede, R. and Strecker, M.R. (2005). Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology, 33, 149–152.
Braathen, A., Blikra, L.H., Berg, S.S. and Karlsen, F. (2004). Rock-slope failures in Norway: Type, geometry, deformation mechanisms and stability. Norsk Geologisk Tidsskrift, 84, 67–88.
Brideau, M., Stead, D., Kinakin, D. and Fecova, K. (2005). Influence of tectonic structures on the Hope Slide, British Columbia, Canada. Engineering Geology, 80, 242–259.
Brideau, M., Yan, M. and Stead, D. (2009). The role of tectonic damage and brittle rock fracture in the development of large rock slope failures, Geomorphology, 103, 30–49.
Bungum, H., Lindholm, C. and Faleide, J.I. (2005). Postglacial seismicity offshore mid-Norway with emphasis on spatio-temporal-magnitudal variations. Marine and Petroleum Geology, 22, 137–148.
Clague, J.J. and Evans, S.G. 1994. Formation and Failure of Natural Dams in the Canadian Cordillera. Geological Survey of Canada, Bulletin 464.
Costa, J.E. and Schuster, R.L. (1988). The formation and failure of natural dams. Geological Society of America Bulletin, 100, 1054–1068.
Crandell, D.R. and Fahnestock, R.K. (1965). Rockfalls and Avalanches from Little Tahoma Peak on Mount Rainier, Washington. US Geological Survey, Bulletin 1221-A.
Crosta, G.B. and Agliardi, F. (2003). Failure forecast for large rock slides by surface displacement measurements. Canadian Geotechnical Journal, 40, 176–191.
Cruden, D.M. and Hu, X.Q. (1993). Exhaustion and steady state models for predicting landslide hazards in the Canadian Rocky Mountains. Geomorphology, 8, 279–285.
Dai, F.C., Xu, C., Yao, X.et al. (2011). Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. Journal of Asian Earth Sciences, 40, 883–895.
Dobrovolny, E. (1962), Geologia del Valle de La Paz. Departamento Nacional de Geología, Ministerio de Minas y Petróleo, La Paz, Bolivia.
Dortch, J.M., Owen, L.A., Haneberg, W.C.et al. (2009). Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quaternary Science Reviews, 28, 1037–1054.
Eisbacher, G.H. and Clague, J.J. (1984). Destructive Mass Movements in High Mountains: Hazard and Management. Geological Survey of Canada, Paper 84–16.
Evans, S.G. and Clague, J.J. (1994). Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology, 10, 107–128.
Evans, S.G., Roberts, N.J., Ischuk, A.et al. (2009a). Landslides triggered by the 1949 Khait earthquake, Tajikistan, and associated loss of life. Engineering Geology, 109, 195–212.
Evans, S.G., Bishop, N.F., Fidel Smoll, L.et al. (2009b). A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970. Engineering Geology, 108, 96–118.
Evans, S.G., Delaney, K.B., Hermanns, R.L., Strom, A.L. and Scarascia Mugnozza, G. (2011). The formation and behaviour of natural and artificial rockslide dams: Implications for engineering performance and hazard management. In Natural and Artificial Rock Slide Dams, ed. S.G. Evans, R.L. Hermanns, A.L. Strom and G. Scarascia Mugnozza. Berlin: Springer, pp. 1–74.
Fauqué, L., Cortés, J.M., Folguera, A.et al. (2008a). Edades de las avalanchas de rocas ubicadas en el Río Mendoza aguas abajo de Uspallata. Actas del XVII Congreso Geológico Argentino, Jujuy, 1, 282–283.
Fauqué, L., Hermanns, R.L., Wilson, C.et al. (2008b). Paleorepresamientos del Río Mendoza entre Polvaredas y Punta de Vacas, Mendoza, Argentina. Actas del XVII Congreso Geológico Argentino, Jujuy, 1, 274–275.
Fauqué, L., Hermanns, R.L., Hewitt, K.et al. (2009). Mega-deslizamientos de la pared sur del Cerro Aconcagua y su relación con depósitos asignados a la glaciación pleistocena. Revista de la Asociación Geológica Argentina, 65, 691–712.
Ferrer, C. (1999). Represamientos y rupturas de embalses naturales (lagunas de obstrución) como efectos cosísmicos: Algunos ejemplos en los Andes venezolanos. Revista Geográfica Venezolana, 40, 109–121.
Fischer, L., Amann, F., Moore, J. and Huggel, C. (2010). Assessment of periglacial slope stability for the 1988 Tschierva rock avalanche (Piz Morteratsch, Switzerland). Engineering Geology, 116, 32–43.
Furseth, A. (2006). Skredulykker i Norge. Oslo: Tun Forlag.
Glastonbury, J. and Fell, R. (2010). Geotechnical characteristics of large rapid rock slides. Canadian Geotechnical Journal, 47, 116–132.
Guglielmi, Y. and Cappa, F. (2010). Regional-scale relief evolution and large landslides: Insights from geomechanical analyses in the Tinée valley (Southern French Alps). Geomorphology, 117, 121–129.
Hafsten, U. (1986). The establishment of spruce forest in Norway, traced by pollen analysis and radiocarbon datings. Striae, 24, 101–105.
Harrison, J.V. and Falcon, N.L. (1934). Collapse structures (Kuhgalu district, Persia). Geological Magazine, 71, 529–539.
Haselton, K., Hilley, G. and Strecker, M. (2002). Average Pleistocene climatic patterns in the southern Central Andes: Controls on mountain glaciations and paleoclimate implications. Journal of Geology, 110, 211–226.
Hauser, A. (2002). Rock avalanche and resulting debris flow in Estero Parraguirre and Río Colorado, region Metropolitana, Chile. In Catastrophic Landslides, ed. S.G. Evans and J.V. DeGraff. Geological Society of America, Reviews in Engineering Geology 15, pp. 135–148.
Heim, A. (1932). Bergsturz und Menschenleben. Zurich: Beiblatt zur Vierteljahresschrift der Naturforschenden Gesellschaft.
Heim, A. (1949). Observaciones geológicas en la región del terremoto de Ancash de Noviembre de 1946. Sociedad Geológica del Perú, 25, 2–21.
Hermanns, R.L. and Niedermann, S. (2011). Late Pleistocene–Early Holocene paleoseismicity deduced from lake sediment deformation and coeval landsliding in the Calchaquíes valleys, NW Argentina. In Geological Criteria for Evaluating Seismicity Revisited: Forty Years of Paleoseismic Investigations and the Natural Record of Past Earthquakes, ed. F.A. Audemard, A. Michetti and J.P. McCalpin. Geological Society of America, Special Paper 479, pp. 181–194.
Hermanns, R.L. and Schellenberger, A. (2008). Quaternary tephrochronology helps define conditioning factors and triggering mechanisms of rock avalanches in NW Argentina. Quaternary International, 178, 261–275.
Hermanns, R.L. and Strecker, M.R. (1999). Structural and lithological controls on large Quaternary rock avalanches (sturzstroms) in arid northwestern Argentina. Geological Society of America Bulletin, 111, 934–948.
Hermanns, R.L., Trauth, M.H., Niedermann, S., McWilliams, M. and Strecker, M.R. (2000). Tephrochronologic constraints on temporal distribution of large landslides in northwest Argentina. Journal of Geology, 108, 35–52.
Hermanns, R.L., Niedermann, S., Villanueva Garcia, A., Sosa Gomez, J. and Strecker, M.R. (2001). Neotectonics and catastrophic failure of mountain fronts in the southern intra-Andean Puna Plateau, Argentina. Geology, 29, 619–623.
Hermanns, R., Blikra, L., Naumann, M.et al. (2006). Examples of multiple rock-slope collapses from Köfels (Ötz Valley, Austria) and western Norway. Engineering Geology, 83, 94–108.
Hermanns, R.L., Blikra, L.H., Anda, E.et al. (2012). Systematic mapping of large unstable rock slopes in Norway. In Proceedings of the 2nd World Landslide Forum, Rome.
Hewitt, K., Gosse, J. and Clague, J.J. (2011). Rock avalanches and the pace of late Quaternary development of river valleys in the Karakoram Himalaya. Geological Society of America Bulletin, 123, 1836–1850.
Hsü, K.J. (1975). Catastrophic debris streams (sturzstroms) generated by rockfalls, Geological Society of America Bulletin, 86, 129–140.
Huggel, C., Zgraggen-Oswald, S., Haeberli, W.et al. (2005). The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: Assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery. Natural Hazards and Earth System Sciences, 5, 173–187.
Huggel, C., Fischer, L., Schneider, D. and Haeberli, W. (2010). Research advances on climate-induced slope instability in glacier and permafrost high-mountain environments. Geographica Helvetica, 65, 146–156.
Hungr, O. (2006). Rock avalanche occurrence, process and modelling. In Landslides from Massive Rock Slope Failure. Proceedings of the NATO Advanced Research Workshop on Massive Rock Slope Failure: New Models for Hazard Assessment, Celano, Italy, 16–21 June 2002, ed. S.G. Evans, G. Scarascia Mugnozza, A. Strom and R.L. Hermanns. NATO Science Series IV, Earth and Environmental Sciences 49. Dordrecht, Netherlands: Springer, pp. 243–266.
Hungr, O. and Evans, S.G. (2004). Entrainment of debris in rock avalanches: An analysis of a long run-out mechanism. Geological Society of America Bulletin, 116, 1240–1252.
Jackson, L.E., Jr. (2002). Landslides and landscape evolution in the Rocky Mountains and adjacent foothills area, southwestern Alberta, Canada. In Catastrophic Landslides, ed. S.G. Evans and J.V. DeGraff. Geological Society of America, Reviews in Engineering Geology 15, pp. 325–344.
Jibson, R.W. (2009). Using landslides for paleoseismic analysis. In Paleoseismology, ed. J.P. McCalpin. Burlington, MA: Academic Press, pp. 565–601.
Jibson, R.W., Harp, E.L., Schulz, W. and Keefer, D.K. (2006). Large rock avalanches triggered by the M7.9 Denali fault, Alaska, earthquake of 3 November 2002. Engineering Geology, 83, 144–160.
Kampherm, T.S., Evans, S.G. and Valderrama Murillo, P. (2009). Landslides triggered by the 1946 Ancash earthquake, Peru. Geophysical Research Abstracts, 11, EGU2009–13820.
Keefer, D.K. (1984). Landslides caused by earthquakes. Geological Society of America Bulletin, 95, 406–421.
Kojan, E. and Hutchinson, J.N. (1978). Mayunmarca rockslide and debris flow, Peru. In Rockslides and Avalanches. 1. Natural Phenomena, ed. B. Voight. Amsterdam: Elsevier Scientific Publishing Company, pp. 315–361.
Leroueil, S., Locat, J., Vaunat, J., Picarelli, L. and Faure, R. (1996). Geotechnical characterization of slope movements. In Proceedings of the International Symposium on Landslides: 1. Rotterdam: Balkema, pp. 53–74.
Longva, O., Blikra, L.H. and Dehls, J.F. (2009). Rock avalanches: Distribution and Frequencies in the Inner Part of Storfjorden, Møre og Romsdal County, Norway. Norwegian Geotechnical Institute, Report 2009.002.
Martino, S., Moscatelli, M. and Scarascia Mugnozza, G. (2004). Quaternary mass movements controlled by a structurally complex setting in the central Apennines (Italy). Engineering Geology, 72, 33–55.
Montandon, F. (1933). Chronologie des grands éboulements alpins du debut de l’ére chrétienne à nos jours. Matériaux pour i’étude des calamités, 32, 271–340.
Mörner, N.-A. (1996). Liquefaction and varve deformation as evidence of paleoseismic events and tsunamis: The autumn 10,430 BP case in Sweden. Quaternary Science Reviews, 15, 939–948.
Nicoletti, P.G. and Sorriso-Valvo, M. (1991). Geomorphic controls of the shape and mobility of rock avalanches. Geological Society of America Bulletin, 103, 1365–1373.
Noetzli, J., Gruber, S., Kohl, T., Salzman, N. and Haeberli, W. (2007). Three-dimensional distribution and evolution of permafrost temperatures in idealized high-mountain topography. Journal of Geophysical Research, 112, F02S13. doi:10.1029/2006JF000545.
Owen, L.A., Kamp, U., Khattak, G.A.et al. (2008). Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology, 94, 1–9.
Penna, I., Hermanns, R.L., Folguera, A. and Niedermann, S. (2011). Multiple slope failures associated with neotectonic activity in the southern central Andes (37°–37°30′S). Patagonia, Argentina. Geological Society of America Bulletin, 123, 1880–1895.
Plafker, G. and Ericksen, G.E. (1978). Nevados Huascaran avalanches, Peru. In Rockslides and Avalanches, ed. B. Voight. Amsterdam: Elsevier, pp. 277–314.
Prager, C., Zangerl, C., Patzelt, G. and Brandner, R. (2008). Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Natural Hazard and Earth System Sciences, 8, 377–407.
Redfield, T.F. and Osmundsen, P.T. (2009). The Tjellefonna fault system of Western Norway: Linking late-Caledonian extension, post-Caledonian normal faulting, and Tertiary rock column uplift with the landslide-generated tsunami event of 1756. Tectonophysics, 474, 106–123.
Rodríguez, C.E., Bommer, J.J. and Chandler, R.J. (1999). Earthquake-induced landslides: 1980–1997. Soil Dynamics and Earthquake Engineering, 18, 325–346.
Rosas, M., Baumann, V., Videla, A.et al. (2007). Estudio Geocientífico Aplicado al Ordenamiento Territorial, Puente del Inca, Provincia de Mendoza. Servicio Geológico Minero Argentino, Informe Final.
Rosas, M., Wilson, C., Hermanns, R.L., Fauqué, L. and Baumann, V. (2008). Avalanchas de rocas de las cuevas una evidencia de la destabilisación de las laderas como consecuencia del cambio climático del Pleistoceno superior. Actas del XVII Congreso Geológico Argentino, Jujuy, 1, 313–314.
Sanchez, G., Rolland, Y., Corsini, M.G.et al. (2010). Relationships between tectonics, slope instability and climate change: Cosmic ray exposure dating of active faults, landslides and glacial surfaces in the SW Alps. Geomorphology, 117, 1–13.
Scheidegger, A.E. (1961). Theoretical Geomorphology. Berlin: Springer.
Schwartz, D. (1988). Paleoseismicity and neotectonics of the Cordillera Blanca fault zone, northern Peruvian Andes. Journal of Geophysical Research, 93(B5), 4712–4730.
Schuster, R.L. and Alford, D. (2004). Usoi landslide dam and lake Sarez, Pamir Mountains, Tajikistan. Environmental and Engineering Geoscience, 10, 151–168.
Sepulveda, S., Serey, A., Lara, M., Pavez, A. and Rebolledo, S. (2010). Landslides induced by the April 2007 Aysén fjord earthquake, Chilean Patagonia. Landslides, 7, 483–492.
Shreve, R.L. (1966). Sherman landslide, Alaska. Science, 154, 1639–1643.
Soldati, M., Corsini, A. and Pasuto, A. (2004). Landslides and climate change in the Italian Dolomites since the Late Glacial. Catena, 55, 141–161.
Strasser, M., Anselmetti, F.S., Fäh, D., Giardini, D. and Schnellmann, M. (2006). Magnitudes and source areas of large prehistoric northern alpine earthquakes revealed by slope failures in lakes. Geology, 34, 1005–1008.
Strecker, M.R. and Marrett, R.A. (1999). Kinematic evolution of fault ramps and role in development of landslides and lakes in northwestern Argentine Andes. Geology, 27, 307–310.
Tappin, D.R. (2010). Mass transport events and their tsunami hazard. In Submarine Mass Movements and Their Consequences, ed. D.C. Mosher, L. Moscardelli, J.D. Chaytor, C.D.P. Baxter, H.J. Lee and R. Urgeles. Berlin: Springer, pp. 667–684.
Trauth, M.H., Alonso, R.A., Haselton, K.R., Hermanns, R.L. and Strecker, M.R. (2000). Climate change and mass movements in the NW Argentine Andes. Earth and Planetary Science Letters, 179, 243–256.
von Poschinger, A., Wassmer, P. and Maisch, M. (2006). The Flims rockslide: History of interpretation and new insights. In Landslides from Massive Rock Slope Failure. Proceedings of the NATO Advanced Research Workshop on Massive Rock Slope Failure: New Models for Hazard Assessment, Celano, Italy, 16–21 June 2002, ed. S.G. Evans, G. Scarascia Mugnozza, A. Strom and R.L. Hermanns. NATO Science Series IV, Earth and Environmental Sciences 49. Dordrecht, Netherlands: Springer, pp. 329–356.
Welkner, D., Eberhardt, E. and Hermanns, R.L. (2010). Hazard investigation of the Portillo rock avalanche site, central Andes, Chile, using an integrated field mapping and numerical modelling approach. Engineering Geology, 114, 278–297.
Wörner, G., Uhlig, D., Kohler, I. and Seyfried, H. (2002). Evolution of the west Andean escarpment at 18°S (N. Chile) during the last 25 ma: Uplift, erosion and collapse through time. Tectonophysics, 345, 183–198.
Yarnold, J.C. (1993). Rock-avalanche characteristics in dry climates and the effect of flow into lakes: Insights from mid-Tertiary sedimentary breccias near Artillery Peak, Arizona, Geological Society of America Bulletin, 105, 345–360.