Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T19:46:12.383Z Has data issue: false hasContentIssue false

16 - Micro LIBS technique

Published online by Cambridge University Press:  08 August 2009

Pascal Fichet
Affiliation:
CEA Saclay, France Cécile Fabre, Jean Dubessy, Marie-Christine
Jean-Luc Lacour
Affiliation:
CEA Saclay, France Cécile Fabre, Jean Dubessy, Marie-Christine
Denis Menut
Affiliation:
CEA Saclay, France Cécile Fabre, Jean Dubessy, Marie-Christine
Patrick Mauchien
Affiliation:
CEA Saclay, France Cécile Fabre, Jean Dubessy, Marie-Christine
Marie-Christine Boiron
Affiliation:
Equipes Interactions entre Fluides et Minéraux, Université Henri Poincaré, France
Andrzej W. Miziolek
Affiliation:
U.S. Army Research Laboratory, USA
Vincenzo Palleschi
Affiliation:
Istituto per I Processi Chimico-Fisici, Italy
Israel Schechter
Affiliation:
Technion - Israel Institute of Technology, Haifa
Get access

Summary

Introduction

The LIBS technique (laser-induced breakdown spectroscopy) has been applied mainly for the bulk analysis of solids [1], liquids [2], or gases [3], but more sparsely for elemental microanalysis of solid surfaces. In this chapter we describe different results obtained with a micro LIBS device devoted to element distribution analysis on solid surfaces and to localized analysis. The crater diameter and its shape are two crucial parameters that have to be well controlled to obtain reliable results. After a description of different published results concerning micro plasmas and recent applications of surface analysis, a complete description of a laboratory micro LIBS device is reported. The smallest crater diameter achieved with the experimental set-up and that can be used for analytical purposes is 3 μm. An original device offering an attractive feature to obtain regular spaced craters is also presented. The characteristics of the system in terms of quantitative analysis are highlighted. Different element distributions on surfaces of ceramics and steel samples are shown to demonstrate the very high potential of micro LIBS for elemental microanalysis. Finally, the micro LIBS technique is presented as a powerful analytical method for geological samples.

The use of a microscope combined with a laser has been reviewed previously [4]. This present chapter provides information on technical details of manufactured microanalyzers combined with a spark-gap device, positioned above the sample surface, to make localized analysis. With the different manufactured systems, crater diameters from laser ablation could vary from 10 μm to 1 mm.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fichet, P., P. Mauchien and C. Moulin, Appl. Spectrosc., 53 (1999), 1111–1117CrossRef
Fichet, P., P. Mauchien, Wagner, J. F. and Moulin, C., Anal. Chim. Acta, 429 (2001), 269–278CrossRef
Dudragne, L., P. Adam and J. Amouroux, Appl. Spectrosc., 10 (1998), 1321–1327CrossRef
Moenke-Blankenburg, L., Laser Microanalysis (New York: Wiley, 1989)Google Scholar
Talmi, Y., Sieper, H. P. and L. Moenke-Bankenburg, Anal. Chim. Acta, 127 (1981), 71–85CrossRef
Häkkänen, H. J. and Korppi-Tommola, J. E. I., Appl. Spectrosc., 49 (1995), 1721–1728CrossRef
Wiggenhauser, H., Schaurich, D. and Wilsch, G., NDT&E Internat., 31 (4) (1998), 307–313CrossRef
Romero, D., Fernandez, J. M.-Romero and Laserna, J. J., J. Anal. Atom. Spectrom., 14 (1999), 199–204CrossRef
Vadillo, J. M., Palanco, S., Romero, M. D. and Laserna, J. J., Fresenius J. Anal. Chem., 355 (1996), 909–912CrossRef
Hidalgo, M., F. Martin and Laserna, J. J., Anal. Chem., 68 (1996), 1095–1100CrossRef
Romero, D. and Laserna, J. J., Anal. Chem., 15 (1997), 2871–2876CrossRef
Romero, D. and Laserna, J. J., J. Anal. Atom. Spectrom., 13 (1998), 557–560CrossRef
Vadillo, J. M., Garcia, C. C., C. Palanco and Laserna, J. J., J. Anal. Atom. Spectrom., 13 (1998), 793–797CrossRef
Anderson, D. A., Cameron, W. M., T. English and Smith, A. T., Appl. Spectrosc., 49 (1995), 691–701CrossRef
Lucena, P. and Laserna, J. J., Spectrochim. Acta, 56B (2001), 177–185CrossRef
Lucena, P., Vadillo, J. M. and Laserna, J. J., Appl. Spectrosc., 55 (2001), 267–272CrossRef
Yoon, Y. Y., Kim, T. S., Chung, K. S., Lee, K. Y. and Lee, G. H., Analyst, 122 (1997), 1223–1227CrossRef
Gornushkin, I. B., Smith, B. W., H. Nasajpour and Winefordner, J. D., Anal. Chem., 71 (1999), 5157–5164CrossRef
Kossakovski, D. and Beauchamp, J. L., Anal. Chem., 72 (2000), 4731–4737CrossRef
Davies, C. C., Atia, W. A., A. Gungor. et al., Las. Phys., 7 (1997), 243–248
Contract MAT1 (Measurement and testing), CT-93-0029 ((1993–1996)
Geertsen, C., Lacour, J. L., P. Mauchien and L. Pierrard, Spectrochim. Acta, 51B (1996), 1403–1416CrossRef
André, N., Geertsen, C., Lacour, J. L., P. Mauchien and S. Sjöström, Spectrochim. Acta, 49B (1994), 12–14
Adams, M. D. and Tong, S. C., Anal. Chem., 12 (1968), 1762–1765CrossRef
Barton, H. N., Appl. Spectrosc., 23 (1969), 519–520CrossRef
S. W. Allison, PhD thesis, University of Virginia (1979)
Wachter, J. R. and Cremers, D., Appl. Spectrosc., 41 (1987), 1042–1048CrossRef
Stoffels, E., P. Van de P. Weijer and J. Van der Mullen, Spectrochim. Acta, 46B (1991), 1459–1470CrossRef
Pietsch, W., A. Petit and A. Briand, Spectrochim. Acta, 53B (1998), 751–761CrossRef
Whitehouse, A. I., Young, J., Botheroyd, I. M. et al., Spectrochim. Acta, 56B (2001), 821–830CrossRef
Aragon, C., Aguilera, J. A. and Penalba, F., Appl. Spectrosc., 53 (1999), 1259–1267CrossRef
Sturm, V., L. Peter and R. Noll, Appl. Spectrosc., 9 (2000), 1275–1278CrossRef
Boiron, M. C., Dubessy, J., André, N. et al., Geochim. Cosmochim. Acta, 55 (1991), 917–923CrossRef
Fabre, C., Boiron, M. C., Dubessy, J. and Moissette, A., J. Anal. Atom. Spectrom., 14 (1999), 913–922CrossRef
Fabre, C., Boiron, M. C., Dubessy, J.et al., Geochim. Cosmochim. Acta (2001), in pressGoogle Scholar
Fabre, C., Boiron, M. C., J. Dubessy, M. Cathelineau and Banks, D. A., Chem. Geol. (2001), in pressGoogle Scholar
European Patent Office no. 00974635.5-2204 (10/8/2001)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×