Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-29T09:26:44.349Z Has data issue: false hasContentIssue false

3 - The legacy of aqueous environments on soils of the McMurdo Dry Valleys: contexts for future exploration of martian soils

Published online by Cambridge University Press:  06 July 2010

Peter T. Doran
Affiliation:
University of Illinois, Chicago
W. Berry Lyons
Affiliation:
Ohio State University
Diane M. McKnight
Affiliation:
University of Colorado, Boulder
Get access

Summary

Introduction

The McMurdo Dry Valleys are the largest and one of the most southernly exposed terrestrial antarctic environments (Ugolini and Bockheim,2008) and have been a prominent analog environment for speculations about surface processes (Mahaney et al., 2001; Dickenson and Rosen, 2003; Marchant and Head, 2007) and potential biology (McKay, 1997; Wynn-Williams and Edwards, 2000) on Mars. The extremes in cold and aridity, the paucity of visually conspicuous life forms, and the undisturbed conditions of the McMurdo Dry Valleys make this region an obvious candidate for such comparisons. Recent discoveries of evidence demonstrating past and perhaps present availability of liquid water on the martian surface detected by the Mars Global Surveyor (Malin and Edgett, 2000; Baker, 2001) and the Spirit and Opportunity rovers (Squires et al., 2004a; Haskin et al., 2005) have extended the foundation of these comparisons beyond similarities in climate to surface geomorphology, geochemistry, and mineralogy (Chevrier et al., 2006; Marchant and Head, 2007; Amundson et al., 2008).

Water is the primary limitation to geochemical weathering and biological activity in the McMurdo Dry Valleys of Antarctica and other cold desert ecosystems where availability and movement of liquid water is limited by low temperatures (Kennedy, 1993; Convey et al., 2003; Barrett et al., 2008). This limitation of liquid water results in slow weathering and highly constrained biological activity contributing to relatively stable geochemical conditions in surface environments. Thus, in the McMurdo Dry Valleys, the legacy of paleo-aquatic environments is preserved in contemporary patterns of soil geochemistry.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, B. J., Bardgett, R. D., Ayres, E., et al. (2006). Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry, 38, 3003–3018.CrossRefGoogle Scholar
Aislabie, J. M., Chhour, K. L., Saul, D. J., et al. (2006). Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biology and Biochemistry, 38, 3041–3056.CrossRefGoogle Scholar
Amundson, R. A., et al. (2008). On the in situ aqueous alteration of soil on Mars. Geochimica et Cosmochimica Acta, 72, 3845–3864.CrossRefGoogle Scholar
Ayers, E., Adams, B. J., Barrett, J. E., Virginia, R. A., and Wall, D. H. (2007). Soil and sediment biogeochemistry and faunal community structure across aquatic-terrestrial interfaces in a polar desert ecosystem. Ecosystems, doi: 10.1007/s10021–007–9035-x.CrossRefGoogle Scholar
Baker, V. R. (2001). Water and the martian landscape. Nature, 412, 228–235.CrossRefGoogle ScholarPubMed
Baker, V. R., Strom, R. G., Gulick, V. C., et al. (1991). Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature, 352, 589–594.CrossRefGoogle Scholar
Bandfield, J. L., Hamilton, V. E., and Christensen, P. R. (2000). A global view of Martian surface composition from MGS-TES. Science, 287, 1626–30.CrossRefGoogle Scholar
Barrett, J. E., Virginia, R. A., and Wall, D. H. (2002). Trends in resin and KCl-extractable soil nitrogen across landscape gradients in Taylor Valley, Antarctica. Ecosystems, 5, 289–299.CrossRefGoogle Scholar
Barrett, J. E., Wall, D. H., Virginia, R. A., et al. (2004). Biogeochemical parameters and constraints on the structure of soil biodiversity. Ecology, 85, 3105–3118.CrossRefGoogle Scholar
Barrett, J. E., Virginia, R. A., Parsons, A. N., and Wall, D. H. (2005). Potential soil organic matter turnover in Taylor Valley, Antarctica. Arctic Antarctic and Alpine Research, 37, 107–116.Google Scholar
Barrett, J. E., Virginia, R. A., Hopkins, D. W., et al. (2006). Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biology and Biochemistry, 38, 3019–3034.CrossRefGoogle Scholar
Barrett, J. E., Virginia, R. A., Lyons, W. B., et al. (2007). Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems. Journal of Geophysical Research, Biogeosciences, 112, G01010.Google Scholar
Barrett, J. E., Virginia, R. A., Wall, D. H., et al. (2008). Persistent effects of a discrete climate event on a polar desert ecosystem. Global Change Biology, 14, 2249–2261.CrossRefGoogle Scholar
Bate, D. B., Barrett, J. E., Poage, M. A., and Virginia, R. A. (2008). Soil phosphorus cycling in an Antarctic Polar Desert. Geoderma, 144, 21–31.CrossRefGoogle Scholar
Bedard, J. H. J., Marsh, B. D., Hersum, T. G., Naslund, H. R., and Mukasa, S. B. (2007). Large-scale mechanical redistribution of orthopyroxene and plagioclase in the basement sill, Ferrar dolerites, McMurdo Dry Valleys, Antarctica. Journal of Petrology, 48, 2289–2326.CrossRefGoogle Scholar
Bell, J. F., McSeen, H. Y., Crisp, J. A., et al. (2000). Mineralogic and compositional properties of Martian soil and dust: results from Mars Pathfinder. Journal of Geophysical Research, Planets, 105(E1), 1721–1755.CrossRefGoogle Scholar
Benner, S. A., Devine, K. G., Matveeva, L. N., and Powell, D. H. (2000). The missing organic molecules on Mars. Proceedings of the National Academy of Sciences of the United States of America, 97, 2425–2430.CrossRefGoogle ScholarPubMed
Bockheim, J. G. (1997). Properties and classification of cold desert soils from Antarctica. Soil Science Society of America, 61, 224–231.CrossRefGoogle Scholar
Bockheim, J. G. (2002). Landform and soil development in the McMurdo Dry valleys, Antarctica: a regional synthesis. Arctic Antarctic and Alpine Research, 34, 308–317.CrossRefGoogle Scholar
Bockheim, J. G. (2007). Soil processes and development rates in the Quartermain Mountains, upper Taylor Glacier region, Antarctica. Geografiska Annaler Series A, Physical Geography, 89A, 153–165.CrossRefGoogle Scholar
Bockheim, J. G. and Hall, K. J. (2002). Permafrost, active-layer dynamics and periglacial environments of continental Antarctica. South African Journal of Science, 98, 82–90.Google Scholar
Bockheim, J. G., Campbell, I. B., and McLeod, M. (2007). Permafrost distribution and active-layer depths in the McMurdo dry valleys, Antarctica. Permafrost and Periglacial Processes, 18, 217–227.CrossRefGoogle Scholar
Bomblies, A., McKnight, D. M., and Andrews, E. D. (2001). Retrospective simulation of lake-level rise in Lake Bonney based on recent 21-year record, indication of recent climate change in the McMurdo Dry Valleys, Antarctica. Journal of Paleolimnology, 25, 477–492.CrossRefGoogle Scholar
Burkins, M. B., Virginia, R. A., Chamberlain, C. P., and Wall, D. H. (2000). Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology, 81, 2377–2391.CrossRefGoogle Scholar
Burkins, M. B., Virginia, R. A., and Wall, D. H. (2001). Organic carbon cycling in Taylor Valley, Antarctica, quantifying soil reservoirs and soil respiration. Global Change Biology, 7, 113–125.CrossRefGoogle Scholar
Cabrol, N. A. and Grin, E. A. (1999). Distribution, classification, and ages of Martian impact crater lakes. Icarus, 142, 160–172.CrossRefGoogle Scholar
Campbell, I. B. (2003). Soil characteristics at a long-term ecological research site in Taylor Valley, Antarctica. Australian Journal of Soil Research, 41, 351–364.CrossRefGoogle Scholar
Campbell, I. B. and Claridge, G. G. C. (1987). Antarctica: Soils, Weathering Processes and Environment. Developments in Soil Science 16. Amsterdam, Netherlands: Elsevier.Google Scholar
Carr, M. H. (2006). The Surface of Mars. Cambridge, UK: Cambridge University Press.Google Scholar
Carr, M. H. and Head, J. W. (2003). Oceans on Mars: an assessment of the observational evidence and possible fate. Journal of Geophysical Research, Planets, 108, 5042.CrossRefGoogle Scholar
Chevrier, V. and Mathe, P. E. (2007). Mineralogy and evolution of the surface of Mars: a review. Planetary and Space Science, 55, 289–314.CrossRefGoogle Scholar
Chevrier, V., Mathe, P. -E., Rochette, P., and Gunnlaugsson, H. P. (2006). Magnetic study of an Antarctic weathering profile on basalt, implication for recent weathering on Mars. Earth and Planetary Science Letters, 244, 501–514.CrossRefGoogle Scholar
Chinn, T. H. (1993). Physical hydrology of the dry valley lakes. In Physical and Biogeochemical Processes in Antarctic Lakes, ed. Green, W. J. and Freidmann, E. I.. Antarctic Research Series 59. Washington, D.C.: American Geophysical Union, pp. 1–51.Google Scholar
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al. (2001). Mars Global Surveyor thermal emission spectrometer experiment, investigation description and surface science results. Journal of Geophysical Research, Planets, 106, 23 823–23 871.Google Scholar
Connell, L., Redman, R., Craig, S., and Rodriguez, R. (2006). Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica. Soil Biology and Biochemistry, 38, 3083–3094.CrossRefGoogle Scholar
Convey, P., Block, W., and Peat, H. J. (2003). Soil arthropods as indicators of water stress in Antarctic terrestrial habitats?Global Change Biology, 9, 1718–1730.CrossRefGoogle Scholar
Cuneo, N. R., Taylor, E. L., Taylor, T. N., and Krings, M. (2003). In situ fossil forest from the upper Fremouw Formation (Triassic) of Antarctica: paleoenvironmental setting and paleoclimate analysis. Palaeogegraphy Palaeoclimatology Palaeoecology, 197, 239–261.CrossRefGoogle Scholar
Denton, G. H. and Hall, B. L. (2000). Glacial and paleoclimatic history of the Ross ice drainage system of Antarctica: preface. Geografiska Annaler Series A, Physical Geography, 82A,139–141.CrossRefGoogle Scholar
Denton, G. H., Bockheim, J. G., Wilson, S. C., and Stuiver, M. (1989). Late Wisconsin and Early Holocene glacial history, Inner Ross Embayment, Antarctica. Quaternary Research, 31, 151–182.CrossRefGoogle Scholar
Dickinson, W. W. and Rosen, M. R. (2003). Antarctic permafrost: an analogue for water and diagenetic minerals on Mars. Geology, 31, 199–202.2.0.CO;2>CrossRefGoogle Scholar
Doran, P. T., McKay, C. P., Clow, G. D., et al. (2002). Valley floor climate observations from the McMurdo dry valleys, Antarctica 1986–2000. Journal of Geophysical Research, Atmospheres, 107, Article 4772.CrossRefGoogle Scholar
Doran, P. T., McKay, C. P., Fountain, A. G., et al. (2008). Hydrologic response to extreme warm and cold summers in the McMurdo Dry Valleys, East Antarctica. Antarctic Science, 20, 499–509.CrossRefGoogle Scholar
Elberling, B., Gregorich, E. G., Hopkins, D. W., et al. (2006). Distribution and dynamics of soil organic matter in an Antarctic dry valley. Soil Biology and Biochemistry, 38, 3095–3106.CrossRefGoogle Scholar
Foley, K. K., Lyons, W. B., Barrett, J. E., and Virginia, R. A. (2006). Pedogenic carbonate distribution within glacial till in Taylor Valley, Southern Victoria Land, Antarctica. In Paleoenvironmental Records of Calcretes and Palustrine Carbonates, ed. Alonso-Zara, A. M. and Tanner, L. H.. GSA Special Paper 416. Boulder, CO: Geological Society of America, pp. 89–103.CrossRefGoogle Scholar
Foreman, C., Wolf, C. F., and Priscu, J. C. (2004). Impact of episodic warming events on the physical, chemical and biological relationships of lakes in the McMurdo Dry Valleys, Antarctica. Aquatic Geochemistry, 10, 239–268.CrossRefGoogle Scholar
Fountain, A. G., Lyons, W. B., Burkins, M. B., et al. (1999). Physical controls on the Taylor Valley ecosystem, Antarctica. BioScience, 49, 961–971.CrossRefGoogle Scholar
Gellert, R., Rieder, R., Anderson, R. C., et al. (2004). Chemistry of rocks and soils in Gusev crater from the alpha particle x-ray spectrometer. Science, 305, 829–832.CrossRefGoogle ScholarPubMed
Gooseff, M. N., Barrett, J. E., Doran, P. T., et al. (2003). Snow-patch influence on soil biogeochemical processes and invertebrate distribution in the McMurdo Dry Valleys, Antarctica. Arctic Antarctic and Alpine Research, 35, 92–100.CrossRefGoogle Scholar
Gooseff, M. N., Northcott, N. L., Barrett, J. E., et al. (2007). Controls on soil water dynamics in near-shore lake environments in an Antarctic polar desert. Vadose Zone Journal, 6, 841–848.CrossRefGoogle Scholar
Haberle, R. M., McKay, C. P., Schaeffer, J., et al. (2001). On the possibility of liquid water on present-day Mars. Journal of Geophysical Research, Planets, 106, 23 317–23 326.CrossRefGoogle Scholar
Hall, B. L. and Denton, G. H. (2000). Radiocarbon chronology of Ross Sea drift, eastern Taylor Valley, Antarctica: evidence for a grounded ice sheet in the Ross Sea at the last glacial maximumGeografiska Annaler Series A, Physical Geography, 82A, 305–336.CrossRefGoogle Scholar
Hall, B. L., Denton, G. H., and Hendy, C. H. (2000). Evidence from Taylor Valley for a grounded ice sheet in the Ross Sea, Antarctica. Geografiska Annaler Series A, Physical Geography, 82A, 275–303.CrossRefGoogle Scholar
Hagedorn, B., Sletten, R. S., and Hallet, B. (2007). Sublimation and ice condensation in hyperarid soils: modeling results using field data from Victoria Valley, Antarctica. Journal of Geophysical Research, 112, F03017.CrossRefGoogle Scholar
Harris, K. J., Carey, A. E., Lyons, W. B., Welch, K. A., and Fountain, A. G. (2007). Solution and isotope geochemistry of subsurface ice melt seeps in Taylor Valley, Antarctica. Geological Society of America Bulletin, 119, 548–555.CrossRefGoogle Scholar
Haskin, L. A., Wang, A., Jollif, B. L., et al. (2005). Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater. Nature, 436, 66–69.CrossRefGoogle ScholarPubMed
Head, J. W., Hiesinger, H., Ivanov, M. A., et al. (1999). Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science, 286, 2134–2137.CrossRefGoogle ScholarPubMed
Heldmann, J. L., Carlsson, E., Johansson, H., Mellon, M. T., and Toon, O. B. (2007). Observations of martian gullies and constraints on potential formation mechanisms. II. The northern hemisphere. Icarus, 188, 324–344.CrossRefGoogle Scholar
Hendy, C. H., Sadler, A. J., Denton, G. H., and Hall, B. L. (2000). Proglacial lake-ice conveyors: a new mechanism for deposition of drift in polar environments. Geografiska Annaler Series A, Physical Geography, 82A, 249–270.CrossRefGoogle Scholar
Higgins, S. M., Denton, G. H., and Hendy, C. H. (2000). Glacial geomorphology of Bonney drift, Taylor Valley, Antarctica. Geografiska Annaler Series A, Physical Geography, 82A, 365–389.CrossRefGoogle Scholar
Hvidberg, C. S. (2005). Polar caps. In Water on Mars and Life, ed. Tokano, T.. Berlin: Springer, pp. 129–152.Google Scholar
Howard, A. D. (2000). The role of eolian processes in forming surface features of the Martian polar layered deposits. Icarus, 144, 267–288.CrossRefGoogle Scholar
Kasting, J. F. (1993). Earth's early atmosphere. Science, 259, 920–926.CrossRefGoogle ScholarPubMed
Kasting, J. F. and Siefert, J. L. (2002). Life and the evolution of Earth's atmosphere. Science, 296, 1066–1068.CrossRefGoogle ScholarPubMed
Kennedy, A. D. (1993). Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arctic and Alpine Research, 25, 308–315.CrossRefGoogle Scholar
Klein, H. P. (1978). The Viking biological experiments on Mars. Icarus, 34, 666–674.CrossRefGoogle Scholar
Klingelhöfer, G., Morris, R. V, Bernhardt, B., et al. (2004). Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer. Science, 306, 1740–1745.CrossRefGoogle ScholarPubMed
Kuzmin, R. O. (2005). Ground ice in the Martian regolith. In Water on Mars and Life, ed. Tokano, T.. Berlin: Springer, pp. 155–189.Google Scholar
Lancaster, N. (2002). Flux of eolian sediment in the McMurdo Dry Valleys, Antarctica: a preliminary assessment. Arctic Antarctic and Alpine Research, 34, 318–323.CrossRefGoogle Scholar
Lazcano, A. and Miller, S. L. (1994). How long did it take for life to begin and evolve to cyanobacteria?Journal of Molecular Evolution, 39, 546–554.CrossRefGoogle ScholarPubMed
Lazcano, A. and Miller, S. L. (1999). On the origin of metabolic pathways. Journal of Molecular Evolution, 49, 424–431.CrossRefGoogle ScholarPubMed
Leovy, C. (2001). Weather and climate on Mars. Nature, 412, 245–249.CrossRefGoogle ScholarPubMed
Lewis, K. J., Fountain, A. G., and Dana, G. L. (1998). Surface energy balance and meltwater production for a Dry Valley glacier, Taylor Valley, Antarctica. Annals of Glaciology, 27, 603–609.CrossRefGoogle Scholar
Lichtenberg, K. A., Arvidson, R. E., Poulet, F., et al. (2007). Coordinated analyses of orbital and Spirit Rover data to characterize surface materials on the cratered plains of Gusev Crater, Mars. Journal of Geophysical Research, Planets, 112, E12S90.Google Scholar
Lundin, R., Barabash, S., Andersson, H., et al. (2004). Solar wind-induced atmospheric erosion at Mars: first results from ASPERA-3 on Mars Express. Science, 305, 1933–1936.CrossRefGoogle ScholarPubMed
Lyons, W. B., Welch, K. A., Nezat, C. A., et al. (1997). Chemical weathering rates and reactions in the Lake Fryxell Basin, Taylor Valley: comparison to temperate river basins. In Ecosystem Processes in Antarctic Ice-free Landscapes, ed. Lyons, W. B., Howard-Williams, C., and Hawes, I., Rotterdam Netherlands: Balkema Press, pp. 147–154.Google Scholar
Lyons, W. B., Fountain, A. G., Doran, P. T., et al. (2000). Importance of landscape position and legacy, the evolution of the lakes in Taylor Valley, Antarctica. Freshwater Biology, 43, 355–367.CrossRefGoogle Scholar
Lyons, W. B., Welch, K. A., Carey, A. E., et al. (2005). Groundwater seeps in Taylor Valley, Antarctica: an example of a decadal subsurface melt event. Annals of Glaciology, 40, 200–206.CrossRefGoogle Scholar
Madronich, S., McKenzie, R. L., Bjorn, L. O., et al. (1998). Changes in biologically active ultraviolet radiation reaching the Earth's surface. Journal of Photochemistry and Photobiology, Biology, 46, 5–19.CrossRefGoogle ScholarPubMed
Mahaney, W. C., Dohm, J. C., and Baker, V. R. (2001). Morphogenesis of Antarctic paleosols, Martian analogue. Icarus, 154, 113–130.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S. (2000). Evidence for recent groundwater seepage and surface runoff on Mars. Science, 288, 2330–2335.CrossRefGoogle ScholarPubMed
Mangold, N. (2005). High latitude patterned grounds on Mars: classification, distribution and climatic control. Icarus, 174, 336–359.CrossRefGoogle Scholar
Marchant, D. R. and Head, J. W. (2007). Antarctic dry valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus, 192, 187–222.CrossRefGoogle Scholar
Marchant, D. R., Lewis, A. R., Phillips, W. M., et al. (2002). Formation of patterned ground and sublimation till over Miocene glacier ice in Beacon Valley, southern Victoria Land, Antarctica. Geological Society of America Bulletin, 114, 718–730.2.0.CO;2>CrossRefGoogle Scholar
Margulis, L. and Sagan, D. (1986). Microcosmos: Four Billion Years of Microbial Evolution. Berkeley, CA: University of California Press.Google Scholar
McKay, C. P. (1997). The search for life on Mars. Origins Of Life And Evolution of the Biosphere, 27, 262–289.CrossRefGoogle ScholarPubMed
McGinnis, L. D. (1981). Dry Valley Drilling Project. Antarctic Research Series 33. Washington, D.C.: American Geophysical Union, 465 pp.CrossRefGoogle Scholar
McLennan, S. M., Bell, J. F., Calvin, W. M., et al. (2005). Provenance and diagenesis of the evaporite-bearing Burns formation, Meridani Planum, Mars. Earth and Planetary Science Letters, 240, 95–121.CrossRefGoogle Scholar
McSween, H. Y., Arvidson, R. E., Bell, J. F., et al. (2004). Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. Science, 305, 842–848.CrossRefGoogle ScholarPubMed
Mellon, M. T. and Phillips, R. J. (2001). Recent gullies on Mars and the source of liquid water. Journal of Geophysical Research, Planets, 106, 23 165–23 179.CrossRefGoogle Scholar
Mellon, M. T., Feldman, W. C., and Prettyman, T. H. (2004). The presence and stability of ground ice in the southern hemisphere of Mars. Icarus, 169, 324–340.CrossRefGoogle Scholar
Michalski, G., Bockheim, J. G., Kendall, C., and Thiemens, M. (2005). Isotopic composition of Antarctic Dry Valley nitrate: implication for NOy sources and cycling in Antarctica. Geophysical Research Letters, 32, L13817.CrossRefGoogle Scholar
Ming, D. W., Mittlefehldt, D. W., and Morris, R. V. (2006). Geochemical and mineralogical indicators for aquerous processes in the Columbia Hills of Gusev crater, Mars. Journal of Geophysical Research, Planets, 111, E02S12.Google Scholar
Mitrofanov, I. G. (2005). Global distribution of subsurface water measured by Mars Odyssey. In Water on Mars and Life, ed. Tokano, TBerlin: Springer, pp. 99–128.Google Scholar
Morris, R. V., Golden, D. C., Bell, J. F., et al. (2000). Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: evidence from multispectral, elemental, and magnetic data on terrestrial analogues, SNSC meteorite, and Pathfinder samples. Journal of Geophysical Research, Planets, 105, 1757–1817.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Bernhardt, B., et al. (2004). Mineralogy at Gusev Crater from the Mössbauer Spectrometer on the Spirit Rover. Science, 305, 833–836.CrossRefGoogle ScholarPubMed
Navarro-Gonzalez, R., Rainey, F. A, Molina, P., et al. (2003). Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science, 302, 1018–1021.CrossRefGoogle ScholarPubMed
Ng, F., Hallet, B., Sletten, R. S., and Stone, J. O. (2005). Fast-growing till over ancient ice in Beacon Valley, Antarctica. Geology, 33, 121–124.CrossRefGoogle Scholar
Nisbet, E. G. and Sleep, N. H. (2001). The habitat and nature of early life. Science, 409, 1083–1091.Google ScholarPubMed
Northcott, M. L., Gooseff, M. N., Barrett, J. E., et al. (2009). Hydrologic characteristics of lake- and stream-side riparian margins in the McMurdo Dry Valleys, Antarctica. Hydrological Processes, 23, 1255–1267.CrossRefGoogle Scholar
Ori, G. G., Marinangeli, L., and Baliva, A. (2000). Terraces and Gilbert-type deltas in crater lakes in Ismenius Lacus and Memnonia (Mars). Journal of Geophysical Research, Planets, 105, 17 629–17 641.CrossRefGoogle Scholar
Parsons, A. N., Barrett, J. E., Wall, D. H., and Virginia, R. A. (2004). Soil carbon dioxide flux in Antarctic Dry Valley ecosystems. Ecosystems, 7, 286–295.CrossRefGoogle Scholar
Perron, J. T., Mitrovica, J. X., Manga, M., Matsuyama, I., and Richards, M. A. (2007). Evidence for an ancient martian ocean in the topography of deformed shorelines. Nature, 447, 840–843.CrossRefGoogle ScholarPubMed
Poage, M. A., Barrett, J. E., Virginia, R. A., and Wall, D. H. (2008). The influence of soil geochemistry on nematode distribution, McMurdo Dry Valleys, Antarctica. Arctic Antarctic and Alpine Research, 40, 119–128.CrossRefGoogle Scholar
Poreda, R. J., Hunt, A. G., Lyons, W. B., and Welch, K. A. (2004). The helium isotopic chemistry of Lake Bonney, Taylor Valley, Antarctica: timing of Late Holocene climate change in Antarctica. Aquatic Geochemistry, 10, 353–371.CrossRefGoogle Scholar
Powers, L. E., Freckman, D. W., and Virginia, R. A. (1995). Spatial distribution of nematodes in polar desert soils of Antarctica. Polar Biology, 15, 325–333.CrossRefGoogle Scholar
Powers, L. E., Ho, M. C., Freckman, D. W., and Virgina, R. A. (1998). Distribution, community structure, and microhabitats of soil invertebrates along an elevational gradient in Taylor Valley, Antarctica. Arctic Antarctic and Alpine Research, 30, 133–141.CrossRefGoogle Scholar
Quinn, R. C., Zent, A. P., Grunthaner, F. J., et al. (2005). Detection and characterization of oxidizing acids in the Atacama Desert using the Mars Oxidation Instrument. Planetary and Space Science, 53, 1376–1388.CrossRefGoogle Scholar
Rieder, R., Gellert, R., Anderson, R. C., et al. (2004). Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray spectrometer. Science, 306, 1746–1749.CrossRefGoogle ScholarPubMed
Schwarz, A. M. J., Green, J. D., Green, T. G. A., and Seppelt, R. D. (1993). Invertebrates associated with moss communities at Canada Glacier, southern Victoria Land, Antarctica. Polar Biology, 13, 157–162.CrossRefGoogle Scholar
Seibert, N. M. and Kargel, J. S. (2001). Small-scale Martian polygonal terrain: implications for liquid surface water. Geophysical Research Letters, 28, 899–902.CrossRefGoogle Scholar
Sizemore, H. G. and Mellon, M. T. (2006). Effects of soil heterogeneity on martian ground-ice stability and orbital estimates of ice table depth. Icarus, 185, 358–369.CrossRefGoogle Scholar
Sletten, R. S., Hallet, B., and Fletcher, R. C. (2003). Resurfacing time of terrestrial surfaces by the formation and maturation of polygonal patterned ground. Journal of Geophysical Research, Planets, 108, 8044.Google Scholar
Squyres, S. W. (1989). Water on Mars. Icarus, 79, 229–288.CrossRefGoogle Scholar
Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., et al. (2004a). In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science, 306, 1709–1714.CrossRefGoogle ScholarPubMed
Squyres, S. W., Arvidson, R. E., Bell, III, J. F., et al. (2004b). The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars. Science, 306,1698–1703.CrossRefGoogle ScholarPubMed
Sugden, D. E., Marchant, D. R., Potter, N., et al. (1995). Preservation of Miocene glacier ice in East Antarctica. Nature, 376, 412–414.CrossRefGoogle Scholar
Taton, A., Grubisic, S., Brambilla, E., Wit, R., and Wilmotte, A. (2003). Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Applied and Environmental Microbiology, 69, 5157–5169.CrossRefGoogle ScholarPubMed
Titus, T. N., Kieffer, H. H., and Christensen, P. R. (2003). Exposed water ice discovered near the South Pole of Mars. Science, 299, 1048–1051.CrossRefGoogle ScholarPubMed
Tosi, S., Onofri, S., Brusoni, M., Zucconi, L., and Vishniac, H. (2005). Response of Antarctic soil fungal assemblages to experimental warming and reduction of UV radiation. Polar Biology, 28, 470–482.CrossRefGoogle Scholar
Treonis, A. M., Wall, D. H., and Virginia, R. A. (1999). Invertebrate biodiversity in Antarctic dry valley soils and sediments. Ecosystems, 2, 482–492.CrossRefGoogle Scholar
Treonis, A. M., Wall, D. H., and Virginia, R. A. (2000). The use of anhydrobiosis by soil nematodes in the Antarctic Dry Valleys. Functional Ecology, 14, 460–467.CrossRefGoogle Scholar
Ugolini, F. C. and Bockheim, J. G. (2008). Antarctic soils and soil formation in a changing environment. Geoderma, 114, 1–8.CrossRefGoogle Scholar
Wentworth, S. J., Gibson, E. K., Velbel, M. A., and McKay, D. S. (2005). Antarctic Dry Valleys and indigenous weathering in Mars meterorites: implications for water and life on Mars. Icarus, 174, 383–395.CrossRefGoogle Scholar
Weber, K. A., Achenbach, L. A., and Coates, J. D. (2006). Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology, 4, 752–764.CrossRefGoogle Scholar
Westall, F. (2005). Early life on Earth and analogies to Mars. In Water on Mars and Life, ed. Tokano, T. Berlin: Springer, pp. 45–64.Google Scholar
Witherow, R. A., Lyons, W. B., Bertler, N. A. N., et al. (2006). The aeolian flux of calcium, chloride and nitrate to the McMurdo Dry Valleys landscape, evidence from snow pit analysis. Antarctic Science, 18, 497–505.CrossRefGoogle Scholar
Wood, S. A., Rueckert, A., Cowan, D. A., and Cary, S. C. (2008). Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME Journal, 2, 308–320.CrossRefGoogle ScholarPubMed
Wynn-Williams, D. D. and Edwards, H. G. M. (2000). Proximal analysis of regolith habitats and protective biomolecules in situ by laser Raman spectroscopy: overview of terrestrial Antarctic habitats and Mars analogs. Icarus, 144, 486–503.CrossRefGoogle Scholar
Yen, A. S., Gellert, R., Schroder, C., et al. (2005). An integrated view of the chemistry and mineralogy of Martian soils. Nature, 436, 49–54.CrossRefGoogle ScholarPubMed
Zeglin, L. H., Sinsabaugh, R. L., Barrett, J. E., Gooseff, M. N., and Takacs-Vesbach, C. D. (2009). Landscape distribution of microbial activity in the McMurdo Dry Valleys: linked biotic processes, hydrology and geochemistry in a cold desert ecosystem. Ecosystems, 12, doi: 10.1007/s10021–009–9242–8.CrossRefGoogle Scholar
Zuber, M. T. (2007). Mars at the tipping point. Nature, 447, 785–786.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×