Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-wfgm8 Total loading time: 0 Render date: 2025-12-17T05:25:28.224Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  aN Invalid Date NaN

Tim Beyne
Affiliation:
Katholieke Universiteit Leuven, Belgium
Vincent Rijmen
Affiliation:
Katholieke Universiteit Leuven, Belgium
Get access

Information

Type
Chapter
Information
Linear Cryptanalysis , pp. 174 - 177
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Ashur, Tomer, Beyne, Tim, and Rijmen, Vincent (Apr. 2020). “Revisiting the Wrong-Key-Randomization Hypothesis.” In: Journal of Cryptology 33.2, pp. 567594. doi: 10.1007/s00145-020-09343-2.CrossRefGoogle Scholar
Baignères, Thomas, Junod, Pascal, and Vaudenay, Serge (Dec. 2004). “How Far Can We Go Beyond Linear Cryptanalysis?” In: ASIACRYPT 2004. Ed. by Lee, Pil Joong. Vol. 3329. LNCS. Springer, Berlin, Heidelberg, pp. 432450. doi: 10.1007/978-3-540-30539-23_1.CrossRefGoogle Scholar
Baigneres, Thomas, Stern, Jacques, and Vaudenay, Serge (Aug. 2007). “Linear Cryptanalysis of Non Binary Ciphers.” In: SAC 2007. Ed. by Adams, Carlisle M., Miri, Ali, and Wiener, Michael J.. Vol. 4876. LNCS. Springer, Berlin, Heidelberg, pp. 184211. doi: 10.1007/978-3-540-77360-3_13.Google Scholar
Banik, Subhadeep et al. (Nov. 2015). “Midori: A Block Cipher for Low Energy.” In: ASIACRYPT 2015, Part II. Ed. by Iwata, Tetsu and Cheon, Jung Hee. Vol. 9453. LNCS. Springer, Berlin, Heidelberg, pp. 411436. doi: 10.1007/978-3-662-48800-3_17.Google Scholar
Beaulieu, Ray et al. (2013). The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive, Report 2013/404. url: https://eprint.iacr.org/2013/404.Google Scholar
Beierle, Christof, Canteaut, Anne, and Leander, Gregor (2018). “Nonlinear Approximations in Cryptanalysis Revisited.” In: IACR Transactions on Symmetric Cryptology 2018.4, pp. 80101. issn: 2519-173X. doi: 10.13154/tosc.v2018.i4.80-101.CrossRefGoogle Scholar
Beyne, Tim (Dec. 2018). “Block Cipher Invariants as Eigenvectors of Correlation Matrices.” In: ASIACRYPT 2018, Part I. Ed. by Peyrin, Thomas and Galbraith, Steven. Vol. 11272. LNCS. Springer, Cham, pp. 331. doi: 10.1007/978-3-030-03326-2_1.Google Scholar
Beyne, Tim (Dec. 2021). “A Geometric Approach to Linear Cryptanalysis.” In: ASIACRYPT 2021, Part I. Ed. by Tibouchi, Mehdi and Wang, Huaxiong. Vol. 13090. LNCS. Springer, Cham, pp. 3666. doi: 10.1007/978-3-030-92062-3_2.Google Scholar
Beyne, Tim (June 2023). “A Geometric Approach to Symmetric-Key Cryptanalysis.” PhD thesis. KU Leuven.Google Scholar
Biryukov, Alex, De Cannière, Christophe, and Quisquater, Michaël (2004). “On Multiple Linear Approximations.” In: Advances in Cryptology – CRYPTO 2004, 24th Annual International Cryptology Conference, Santa Barbara, California, USA, August 15–19, 2004, Proceedings. Ed. by Franklin, Matthew K.. Vol. 3152. LNCS. Springer, pp. 122. doi: 10.1007/978-3-540-28628-8\_1.Google Scholar
Blondeau, Céline and Nyberg, Kaisa (2017). “Joint Data and Key Distribution of Simple, Multiple, and Multidimensional Linear Cryptanalysis Test Statistic and Its Impact to Data Complexity.” In: Designs, Codes and Cryptography 82, pp. 319349.CrossRefGoogle Scholar
Bogdanov, Andrey et al. (Dec. 2012). “Integral and Multidimensional Linear Distinguishes with Correlation Zero.” In: ASIACRYPT 2012. Ed. by Wang, Xiaoyun and Sako, Kazue. Vol. 7658. LNCS. Springer, Berlin, Heidelberg, pp. 244261. doi: 10.1007/978-3-642-34961-4_16.CrossRefGoogle Scholar
Bogdanov, Andrey and Rijmen, Vincent (2014). “Linear Hulls with Correlation Zero and Linear Cryptanalysis of Block Ciphers.” In: DCC 70.3, pp. 369383. doi: 10.1007/s10623-012-9697-z.Google Scholar
Bogdanov, Andrey and Tischhauser, Elmar (Mar. 2014). “On the Wrong Key Randomisation and Key Equivalence Hypotheses in Matsui’s Algorithm 2.” In: FSE 2013. Ed. by Moriai, Shiho. Vol. 8424. LNCS. Springer, Berlin, Heidelberg, pp. 1938. doi: 10.1007/978-3-662-43933-3_2.Google Scholar
Bogdanov, Andrey and Wang, Meiqin (Mar. 2012). “Zero Correlation Linear Cryptanalysis with Reduced Data Complexity.” In: FSE 2012. Ed. by Canteaut, Anne. Vol. 7549. LNCS. Springer, Berlin, Heidelberg, pp. 2948. doi: 10.1007/978-3-642-34047-5_3.Google Scholar
Collard, Baudoin and Standaert, François-Xavier (Apr. 2009). “A Statistical Saturation Attack against the Block Cipher PRESENT.” In: CT-RSA 2009. Ed. by Fischlin, Marc. Vol. 5473. LNCS. Springer, Berlin, Heidelberg, pp. 195210. doi: 10.1007/978-3-642-00862-7_13.Google Scholar
Collard, Baudoin, Standaert, Francois-Xavier, and Quisquater, Jean-Jacques (2007). “Improving the Time Complexity of Matsui’s Linear Cryptanalysis.” In: Information Security and Cryptology – ICISC 2007:10th International Conference, Seoul, Korea, November 29–30, 2007. Proceedings 10. Springer, Berlin, Heidelberg, pp. 7788. doi: 10.1007/978-3-540-76788-6_7.CrossRefGoogle Scholar
Daemen, Joan (Mar. 1995). “Cipher and Hash Function Design Strategies Based on Linear and Differential Cryptanalysis.” PhD thesis. KU Leuven.Google Scholar
Daemen, Joan, Govaerts, René, and Vandewalle, Joos (Dec. 1994). “A New Approach to Block Cipher Design.” In: FSE'93. Ed. by Anderson, Ross J.. Vol. 809. LNCS. Springer, Berlin, Heidelberg, pp. 1832. doi: 10.1007/3-540-58108-1_2.Google Scholar
Daemen, Joan, Govaerts, Rene, and Vandewalle, Joos (Dec. 1995). “Correlation Matrices.” In: FSE'94. Ed. by Preneel, Bart. Vol. 1008. LNCS. Springer, Berlin, Heidelberg, pp. 275285. doi: 10.1007/3-540-60590- 8_21.Google Scholar
Daemen, Joan, Knudsen, Lars R., and Rijmen, Vincent (Jan. 1997). “The Block Cipher Square.” In: FSE'97. Ed. by Biham, Eli. Vol. 1267. LNCS. Springer, Berlin, Heidelberg, pp. 149165. doi: 10.1007/BFb0052343.Google Scholar
Daemen, Joan and Rijmen, Vincent (Dec. 2001). “The Wide Trail Design Strategy.” In: 8th IMA International Conference on Cryptography and Coding. Ed. by Honary, Bahram. Vol. 2260. LNCS. Springer, Berlin, Heidelberg, pp. 222238. doi: 10.1007/3-540-45325-3_20.Google Scholar
Daemen, Joan and Rijmen, Vincent (2020). The Design of Rijndael – The Advanced Encryption Standard (AES). 2nd ed. Information Security and Cryptography. Springer, Berlin, Heidelberg. isbn: 978-3-662-60768-8. doi: 10.1007/978-3-662-60769-5.CrossRefGoogle Scholar
Halmos, Paul R. (1958). Finite-dimensional Vector Spaces. 1st ed. Undergraduate Texts in Mathematics. Springer New York, NY.Google Scholar
Harpes, Carlo, Kramer, Gerhard G., and Massey, James L. (May 1995). “A Generalization of Linear Cryptanalysis and the Applicability of Matsui’s Piling-Up Lemma.” In: EUROCRYPT’95. Ed. by Guillou, Louis C. and Quisquater, Jean-Jacques. Vol. 921. LNCS. Springer, Berlin, Heidelberg, pp. 2438. doi: 10.1007/3-540-49264-X_3.Google Scholar
Harpes, Carlo and Massey, James L. (Jan. 1997). “Partitioning Cryptanalysis.” In: FSE’97. Ed. by Biham, Eli. Vol. 1267. LNCS. Springer, Berlin, Heidelberg, pp. 1327. doi: 10.1007/BFb0052331.Google Scholar
Hermelin, Miia, Cho, Joo Yeon, and Nyberg, Kaisa (2008). “Multidimensional Linear Cryptanalysis of Reduced Round Serpent.” In: Information Security and Privacy, 13th Australasian Conference, ACISP 2008, Wollongong, Australia, July 7–9, 2008, Proceedings. Ed. by Mu, Yi, Susilo, Willy, and Seberry, Jennifer. Vol. 5107. LNCS. Springer, pp. 203215. doi: 10.1007/978-3-540-70500-0\_15.Google Scholar
Kaliski, Burton S. Jr. and Robshaw, Matthew J. B. (Aug. 1994). “Linear Cryptanalysis Using Multiple Approximations.” In: CRYPTO’94. Ed. by Desmedt, Yvo. Vol. 839. LNCS. Springer, Berlin, Heidelberg, pp. 2639. doi: 10.1007/3-540-48658-5_4.Google Scholar
Knudsen, Lars R. and Robshaw, Matthew J. B. (May 1996). “Non-Linear Approximations in Linear Cryptanalysis.” In: EUROCRYPT’96. Ed. by Maurer, Ueli M.. Vol. 1070. LNCS. Springer, Berlin, Heidelberg, pp. 224236. doi: 10.1007/3-540-68339-9_20.Google Scholar
Kullback, Solomon and Leibler, Richard A. (1951). “On Information and Sufficiency.” In: The Annals of Mathematical Statistics 22.1, pp. 7986.10.1214/aoms/1177729694CrossRefGoogle Scholar
Leander, Gregor et al. (Aug. 2011). “A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack.” In: CRYPTO 2011. Ed. by Rogaway, Phillip. Vol. 6841. LNCS. Springer, Berlin, Heidelberg, pp. 206221. doi: 10.1007/978-3-642-22792-9_12.CrossRefGoogle Scholar
Leander, Gregor, Minaud, Brice, and Rønjom, Sondre (Apr. 2015). “A Generic Approach to Invariant Subspace Attacks: Cryptanalysis of Robin, iSCREAM and Zorro.” In: EUROCRYPT 2015, Part I. Ed. by Oswald, Elisabeth and Fischlin, Marc. Vol. 9056. LNCS. Springer, Berlin, Heidelberg, pp. 254283. doi: 10.1007/978-3-662-46800-5_11.Google Scholar
Matsui, Mitsuru (May 1994a). “Linear Cryptanalysis Method for DES Cipher.” In: EUROCRYPT’93. Ed. by Helleseth, Tor. Vol. 765. LNCS. Springer, Berlin, Heidelberg, pp. 386397. doi: 10.1007/3-540-48285-7_33.Google Scholar
Matsui, Mitsuru (Aug. 1994b). “The First Experimental Cryptanalysis of the Data Encryption Standard.” In: CRYPTO’94. Ed. by Desmedt, Yvo. Vol. 839. LNCS. Springer, Berlin, Heidelberg, pp. 111. doi: 10.1007/3-540-48658-5_1.Google Scholar
Nyberg, Kaisa (May 1995). “Linear Approximation of Block Ciphers (Rump Session).” In: EUROCRYPT’94. Ed. by De Santis, Alfredo. Vol. 950. LNCS. Springer, Berlin, Heidelberg, pp. 439444. doi: 10.1007/BFb0053460.Google Scholar
Schulte-Geers, Ernst (2013). “On CCZ-equivalence of Addition mod 2n.” In: Designs, Codes and Cryptography 66, pp. 111127.10.1007/s10623-012-9668-4CrossRefGoogle Scholar
Selçuk, Ali Aydin (Jan. 2008). “On Probability of Success in Linear and Differential Cryptanalysis.” In: Journal of Cryptology 21.1, pp. 131147. doi: 10.1007/s00145-007-9013-7.CrossRefGoogle Scholar
Tardy-Corfdir, Anne and Gilbert, Henri (Aug. 1992). “A Known Plaintext Attack of FEAL-4 and FEAL-6.” In: CRYPTO’91. Ed. by Feigenbaum, Joan. Vol. 576. LNCS. Springer, Berlin, Heidelberg, pp. 172181. doi: 10.1007/3-540-46766-1_12.Google Scholar
Terras, Audrey (1999). Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts. Cambridge University Press, Cambridge.10.1017/CBO9780511626265CrossRefGoogle Scholar
Todo, Yosuke, Leander, Gregor, and Sasaki, Yu (Dec. 2016). “Nonlinear Invariant Attack – Practical Attack on Full SCREAM, iSCREAM, and Midori64.” In: ASIACRYPT 2016, Part II. Ed. by Hee Cheon, Jung and Takagi, Tsuyoshi. Vol. 10032. LNCS. Springer, Berlin, Heidelberg, pp. 333. doi: 10.1007/978-3-662-53890-6_1.Google Scholar
Vaudenay, Serge (1996a). “An Experiment on DES Statistical Cryptanalysis.” In: CCS ’96, Proceedings of the 3rd ACM Conference on Computer and Communications Security, New Delhi, India, March 14–16, 1996. Ed. by Gong, Li and Stearn, Jacques. ACM, New York, pp. 139147. doi: 10.1145/238168.238206.Google Scholar
Vaudenay, Serge (Mar. 1996b). “An Experiment on DES Statistical Cryptanalysis.” In: ACM CCS 96. Ed. by Gong, Li and Stern, Jacques. ACM Press, New York, pp. 139147. doi: 10.1145/238168.238206.CrossRefGoogle Scholar
Wall’en, Johan (Feb. 2003). “Linear Approximations of Addition Modulo 2n.” In: FSE 2003. Ed. by Johansson, Thomas. Vol. 2887. LNCS. Springer, Berlin, Heidelberg, pp. 261273. doi: 10.1007/978-3-540-39887-5_20.Google Scholar

Accessibility standard: WCAG 2.1 A

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.1 of the Web Content Accessibility Guidelines (WCAG), covering newer accessibility requirements and improved user experiences and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Tim Beyne, Katholieke Universiteit Leuven, Belgium, Vincent Rijmen, Katholieke Universiteit Leuven, Belgium
  • Book: Linear Cryptanalysis
  • Online publication: 17 December 2025
  • Chapter DOI: https://doi.org/10.1017/9781009607872.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Tim Beyne, Katholieke Universiteit Leuven, Belgium, Vincent Rijmen, Katholieke Universiteit Leuven, Belgium
  • Book: Linear Cryptanalysis
  • Online publication: 17 December 2025
  • Chapter DOI: https://doi.org/10.1017/9781009607872.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Tim Beyne, Katholieke Universiteit Leuven, Belgium, Vincent Rijmen, Katholieke Universiteit Leuven, Belgium
  • Book: Linear Cryptanalysis
  • Online publication: 17 December 2025
  • Chapter DOI: https://doi.org/10.1017/9781009607872.016
Available formats
×