Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-15T10:18:41.064Z Has data issue: false hasContentIssue false

Section IV - Metabolic Liver Disease

Published online by Cambridge University Press:  19 January 2021

Frederick J. Suchy
Affiliation:
University of Colorado, Children’s Hospital Colorado, Aurora
Ronald J. Sokol
Affiliation:
University of Colorado, Children’s Hospital Colorado, Aurora
William F. Balistreri
Affiliation:
Cincinnati Children’s Hospital Medical Center, Cincinnati
Jorge A. Bezerra
Affiliation:
Cincinnati Children’s Hospital Medical Center, Cincinnati
Cara L. Mack
Affiliation:
University of Colorado, Children’s Hospital Colorado, Aurora
Benjamin L. Shneider
Affiliation:
Texas Children’s Hospital, Houston
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Eminoglu, TF, et al. Very long-chain acyl CoA dehydrogenase deficiency which was accepted as infanticide. Forensic Sci Int 2011;210(1–3):e13.Google Scholar
Saudubray, JM,(2016). Clinical approach to inborn errors of metabolism in pediatrics. In Saudubray, JM, Walter, JH (Eds.), Inborn Metabolic Diseases: Diagnosis and Treatment (pp. 369). New York: Springer Berlin Heidelberg.Google Scholar
Blau, N, Duran, M, Gibson, KM. (2008). Laboratory Guide to the Methods in Biochemical Genetics (pp. xxvi, 860). Berlin: Springer.Google Scholar
Crushell, E, et al. Negative screening tests in classical galactosaemia caused by S135L homozygosity. J Inherit Metab Dis 2009;32(3):412–15.Google Scholar
Vilarinho, S, Mistry, PK. Exome sequencing in clinical hepatology. Hepatology 2019;70(6):2185–92.Google Scholar
Hegarty, R, et al. Inherited metabolic disorders presenting as acute liver failure in newborns and young children: King’s College Hospital experience. Eur J Pediatr 2015;174(10):1387–92.Google Scholar
Li, H, et al. Acute liver failure in neonates with undiagnosed hereditary fructose intolerance due to exposure from widely available infant formulas. Mol Genet Metab 2018;123(4):428–32.Google Scholar
Chinsky, JM, et al. Diagnosis and treatment of tyrosinemia type I: a US and Canadian consensus group review and recommendations. Genet Med 2017;19(12). Doi: 10.1038/gim.2017.101Google Scholar
Heissat, S, et al. Neonatal hemochromatosis: diagnostic work-up based on a series of 56 cases of fetal death and neonatal liver failure. J Pediatr 2015;166(1):6673.Google Scholar
Salen, G, Steiner, RD. Epidemiology, diagnosis, and treatment of cerebrotendinous xanthomatosis (CTX). J Inherit Metab Dis 2017;40(6):771–81.Google Scholar
Bull, LN, Thompson, RJ. Progressive familial intrahepatic cholestasis. Clin Liver Dis 2018;22(4):657–69.Google Scholar
Gheldof, A, et al. Clinical implementation of gene panel testing for lysosomal storage diseases. Mol Genet Genomic Med 2019;7(2):e00527.Google Scholar
Walter, J, Laforêt, L.P. (2016). The glycogen storage diseases and related disorders. In Saudubray, BM, Walter, J (Eds.), Inborn Metabolic Diseases: Diagnosis and Treatment (pp. 121–37). New York: Springer Berlin Heidelberg.Google Scholar
Frazier, DM, et al. The tandem mass spectrometry newborn screening experience in North Carolina: 1997–2005. J Inherit Metab Dis 2006;29(1):7685.Google Scholar
Matern, D. (2008). Acylcarnitines, including in vitro loading tests. In Blau, N (Ed.), Laboratory Guide to the Methods in Biochemical Genetics (pp. 171206). Berlin: Springer-Verlag.Google Scholar
Rinaldo, P. (2008). Organic acids. In Blau, DM, Gibson, KM (Eds.), Laboratory Guide to the Methods in Biochemical Genetics pp. (137–70). Berlin: Springer-Verlag.Google Scholar
Vassault, A. (2008). Lactate, pyruvate, acetoacetate and 3-hydroxybutyrate. In Blau, DM, Gibson, KM (Eds.), Laboratory Guide to the Methods in Biochemical Genetics (pp. 3551). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Coude, FX, et al. Secondary citrullinemia with hyperammonemia in four neonatal cases of pyruvate carboxylase deficiency. Pediatrics 1981;68(6):914.Google Scholar
Munnich, A, et al. Congenital lactic acidosis, alpha-ketoglutaric aciduria and variant form of maple syrup urine disease due to a single enzyme defect: dihydrolipoyl dehydrogenase deficiency. Acta Paediatr Scand 1982;71(1):167–71.Google Scholar
Bonnefont, JP, et al. Alpha-ketoglutarate dehydrogenase deficiency presenting as congenital lactic acidosis. J Pediatr 1992;121(2):255–8.CrossRefGoogle ScholarPubMed
da Fonseca-Wollheim, F. Deamidation of glutamine by increased plasma gamma-glutamyltransferase is a source of rapid ammonia formation in blood and plasma specimens. Clin Chem 1990;36(8 Pt 1):1479–82.Google Scholar
Tein, I. Neonatal metabolic myopathies. Semin Perinatol 1999;23(2):125–51.Google Scholar
Chalmers, RA. Organic acids in urine of patients with congenital lactic acidoses: an aid to differential diagnosis. J Inherit Metab Dis 1984;7(Suppl 1):7989.Google Scholar
Cowan, TM, et al. Technical standards and guidelines for the diagnosis of biotinidase deficiency. Genet Med 2010;12(7):464–70.Google Scholar
Bourgeron, T, et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet 1995;11(2):144–9.Google Scholar
Bennett, MJ, et al. Secondary inhibition of multiple NAD-requiring dehydrogenases in respiratory chain complex I deficiency: possible metabolic markers for the primary defect. J Inherit Metab Dis 1993;16(3):560–2.Google Scholar
Kerner, J, Hoppel, C. Fatty acid import into mitochondria. Biochim Biophys Acta 2000;1486(1):117.Google Scholar
Rinaldo, P, et al. Sudden neonatal death in carnitine transporter deficiency. J Pediatr 1997;131(2):304–5.Google Scholar
Raymond, K, et al. Medium-chain acyl-CoA dehydrogenase deficiency: sudden and unexpected death of a 45 year old woman. Genet Med 1999;1(6):293–4.Google Scholar
Patel, JS, Leonard, JV. Ketonuria and medium-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 1995;18(1):98–9.Google Scholar
Rinaldo, P, et al. Clinical and biochemical features of fatty acid oxidation disorders. Curr Opin Pediatr 1998;10(6):615–21.Google Scholar
Burrage, LC, et al. Elevations of C14:1 and C14:2 plasma acylcarnitines in fasted children: a diagnostic dilemma. J Pediatr 2016;169:208–13 e2.Google Scholar
Costa, CC, et al. Dynamic changes of plasma acylcarnitine levels induced by fasting and sunflower oil challenge test in children. Pediatr Res 1999;46(4):440–4.Google Scholar
Drousiotou, A, et al. Ethylmalonic encephalopathy: application of improved biochemical and molecular diagnostic approaches. Clin Genet 2011;79(4):385–90.Google Scholar
Stanley, CA, et al. Chronic cardiomyopathy and weakness or acute coma in children with a defect in carnitine uptake. Ann Neurol 1991;30(5):709–16.Google Scholar
Minkler, PE, et al. Quantification of carnitine and acylcarnitines in biological matrices by HPLC electrospray ionization-mass spectrometry. Clin Chem 2008;54(9):1451–62.CrossRefGoogle ScholarPubMed
Boles, RG, et al. Retrospective biochemical screening of fatty acid oxidation disorders in postmortem livers of 418 cases of sudden death in the first year of life. J Pediatr 1998;132(6):924–33.Google Scholar
Dietzen, DJ, et al. National academy of clinical biochemistry laboratory medicine practice guidelines: follow-up testing for metabolic disease identified by expanded newborn screening using tandem mass spectrometry; executive summary. Clin Chem 2009;55(9):1615–26.Google Scholar
Ohura, T, et al. Clinical pictures of 75 patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). J Inherit Metab Dis 2007;30(2):139–44.CrossRefGoogle ScholarPubMed
Saheki, T, Song, YZ. (1993). Citrin deficiency. In Adam, MP et al. (Eds.), GeneReviews((R)). Seattle, WA.Google Scholar
Matthews, DE, et al. Alloisoleucine formation in maple syrup urine disease: isotopic evidence for the mechanism. Pediatr Res 1980;14(7):854–7.Google Scholar
Oglesbee, D, et al. Second-tier test for quantification of alloisoleucine and branched-chain amino acids in dried blood spots to improve newborn screening for maple syrup urine disease (MSUD). Clin Chem 2008;54(3):542–9.CrossRefGoogle ScholarPubMed
Van Hove, JLK, et al. (1993). Nonketotic hyperglycinemia. In Adam, MP et al. (Eds.), GeneReviews. Seattle, WA.Google Scholar
Watson, MS, Lloyd-Puryear, MA, Rinaldo, P, Howell, RR. Newborn screening: toward a uniform screening panel and system. Genet Med 2006;8(Suppl 1):1S252S.Google Scholar
Turgeon, C, et al. Combined newborn screening for succinylacetone, amino acids, and acylcarnitines in dried blood spots. Clin Chem 2008;54(4):657–64.Google Scholar
Tortorelli, S, et al. Two-tier approach to the newborn screening of methylenetetrahydrofolate reductase deficiency and other remethylation disorders with tandem mass spectrometry. J Pediatr 2010;157(2):271–5.Google Scholar
Turgeon, CT, et al. Determination of total homocysteine, methylmalonic acid, and 2-methylcitric acid in dried blood spots by tandem mass spectrometry. Clin Chem 2010;56(11):1686–95.Google Scholar
McHugh, D, et al. Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project. Genet Med 2011;13(3):230–54.CrossRefGoogle ScholarPubMed
Marquardt, G, et al. Enhanced interpretation of newborn screening results without analyte cutoff values. Genet Med 2012;14(7):648–55.Google Scholar
Calonge, N, et al. Committee report: method for evaluating conditions nominated for population-based screening of newborns and children. Genet Med 2010;12(3):153–9.Google Scholar

References

Sveger, T. Liver disease in alpha1-antitrypsin deficiency detected by screening of 200,000 infants. N Engl J Med 1976;294:1316–21.Google Scholar
Silverman, EK, Sandhaus, RA. Clinical practice. Alpha1-antitrypsin deficiency. N Engl J Med 2009;360: 2749–57.Google Scholar
Perlmutter, DH. (2011). Alpha-1-antitrypsin deficiency. In Schiff, ER SM, Maddrey, WC (Eds.), Schiff’s Diseases of the Liver, 11th edn., (pp. 835–67). Oxford: Wiley-Blackwell.Google Scholar
Crystal, RG. Alpha 1-antitrypsin deficiency, emphysema, and liver disease. Genetic basis and strategies for therapy. J Clin Invest 1990;85:1343–52.Google Scholar
Carlson, JA, Rogers, BB, Sifers, RN, Finegold, MJ, Clift, SM, DeMayo, FJ, Bullock, DW, et al. Accumulation of PiZ alpha 1-antitrypsin causes liver damage in transgenic mice. J Clin Invest 1989;83:1183–90.Google Scholar
Dycaico, MJ, Grant, SG, Felts, K, Nichols, WS, Geller, SA, Hager, JH, Pollard, AJ, et al. Neonatal hepatitis induced by alpha 1-antitrypsin: a transgenic mouse model. Science 1988;242:1409–12.Google Scholar
Hidvegi, T, Ewing, M, Hale, P, Dippold, C, Beckett, C, Kemp, C, Maurice, N, et al. An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science 2010;329:229–32.Google Scholar
Marcus, NY, Brunt, EM, Blomenkamp, K, Ali, F, Rudnick, DA, Ahmad, M, Teckman, JH. Characteristics of hepatocellular carcinoma in a murine model of alpha-1-antitrypsin deficiency. Hepatol Res 2010;40:641–53.Google Scholar
Janus, ED, Phillips, NT, Carrell, RW. Smoking, lung function, and alpha 1-antitrypsin deficiency. Lancet 1985;1:152–4.Google Scholar
Silverman, EK, Province, MA, Rao, DC, Pierce, JA, Campbell, EJ. A family study of the variability of pulmonary function in alpha 1-antitrypsin deficiency. Quantitative phenotypes. Am Rev Respir Dis 1990;142:1015–21.Google ScholarPubMed
Crystal, RG. Augmentation treatment for alpha1 antitrypsin deficiency. Lancet 2015;386:318–20.Google Scholar
McElvaney, NG, Burdon, J, Holmes, M, Glanville, A, Wark, PA, Thompson, PJ, Hernandez, P, et al. Long-term efficacy and safety of alpha1 proteinase inhibitor treatment for emphysema caused by severe alpha1 antitrypsin deficiency: an open-label extension trial (RAPID-OLE). Lancet Respir Med 2017;5:5160.Google Scholar
Wang, Y, Perlmutter, DH. Targeting intracellular degradation pathways for treatment of liver disease caused by alpha1-antitrypsin deficiency. Pediatr Res 2014;75:133–9.Google Scholar
Teckman, JH, Qu, D, Perlmutter, DH. Molecular pathogenesis of liver disease in alpha1-antitrypsin deficiency.Hepatology 1996;24:1504–16.Google Scholar
Eriksson, S, Carlson, J, Velez, R. Risk of cirrhosis and primary liver cancer in alpha 1-antitrypsin deficiency. N Engl J Med 1986;314:736–9.Google Scholar
Zhou, H, Fischer, HP. Liver carcinoma in PiZ alpha-1-antitrypsin deficiency. Am J Surg Pathol 1998;22:742–8.Google Scholar
Mostafavi, B, Diaz, S, Tanash, HA, Piitulainen, E. Liver function in alpha-1-antitrypsin deficient individuals at 37 to 40 years of age. Medicine 2017;96:e6180.Google Scholar
Sveger, T. The natural history of liver disease in alpha 1-antitrypsin deficient children. Acta Paediatr Scand 1988;77:847–51.Google Scholar
Chu, AS, Chopra, KB, Perlmutter, DH. Is severe progressive liver disease caused by alpha-1-antitrypsin deficiency more common in children or adults? Liver Transpl 2016;22:886–94.Google Scholar
Volpert, D, Molleston, JP, Perlmutter, DH. Alpha1-antitrypsin deficiency-associated liver disease progresses slowly in some children. J Pediatr Gastroenterol Nutr 2000;31:258–63.Google Scholar
Schaefer, B, Mandorfer, M, Viveiros, A, Finkenstedt, A, Ferenci, P, Schneeberger, S, Tilg, H, et al. Heterozygosity for the alpha-1-antitrypsin Z allele in cirrhosis is associated with more advanced disease. Liver Transpl 2018;24:744–51.Google Scholar
Piitulainen, E, Carlson, J, Ohlsson, K, Alpha, Sveger T. 1-antitrypsin deficiency in 26-year-old subjects: lung, liver, and protease/protease inhibitor studies. Chest 2005;128:2076–81.Google Scholar
Teckman, JH, Perlmutter, DH. Retention of mutant alpha(1)-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response. Am J Physiol Gastrointest Liver Physiol 2000;279:G961–74.Google Scholar
von Schonfeld, J, Breuer, N, Zotz, R, Liedmann, H, Wencker, M, Beste, M, Konietzko, N, et al. Liver function in patients with pulmonary emphysema due to severe alpha-1-antitrypsin deficiency (Pi ZZ). Digestion 1996;57:165–9.Google Scholar
Tomashefski, JF Jr., Crystal, RG, Wiedemann, HP, Mascha, E, Stoller, JK. Alpha 1-Antitrypsin Deficiency Registry Study Group. The bronchopulmonary pathology of alpha-1 antitrypsin (AAT) deficiency: findings of the Death Review Committee of the National Registry for Individuals with Severe Deficiency of Alpha-1 Antitrypsin. Hum Pathol 2004;35:1452–61.Google Scholar
Corley, M, Solem, A, Phillips, G, Lackey, L, Ziehr, B, Vincent, HA, Mustoe, AM, et al. An RNA structure-mediated, posttranscriptional model of human alpha-1-antitrypsin expression. Proc Natl Acad Sci U S A 2017;114:E10244E10253.Google Scholar
Owen, MC, Brennan, SO, Lewis, JH, Carrell, RW. Mutation of antitrypsin to antithrombin. alpha 1-antitrypsin Pittsburgh (358 Met leads to Arg), a fatal bleeding disorder. N Engl J Med 1983;309:694–8.Google Scholar
Mast, AE, Enghild, JJ, Nagase, H, Suzuki, K, Pizzo, SV, Salvesen, G. Kinetics and physiologic relevance of the inactivation of alpha 1-proteinase inhibitor, alpha 1-antichymotrypsin, and antithrombin III by matrix metalloproteinases-1 (tissue collagenase), -2 (72-kDa gelatinase/type IV collagenase), and -3 (stromelysin). J Biol Chem 1991;266:15810–16.Google Scholar
Janoff, A. Elastases and emphysema. Current assessment of the protease-antiprotease hypothesis. Am Rev Respir Dis 1985;132:417–33.Google Scholar
Ni, K, Serban, KA, Batra, C, Petrache, I. Alpha-1 antitrypsin investigations using animal models of emphysema. Ann Am Thorac Soc 2016;13(Suppl4):S311–16.Google Scholar
Borel, F, Sun, H, Zieger, M, Cox, A, Cardozo, B, Li, W, Oliveira, G, et al. Editing out five Serpina1 paralogs to create a mouse model of genetic emphysema. Proc Natl Acad Sci U S A 2018;115:2788–93.Google Scholar
Munch, J, Standker, L, Adermann, K, Schulz, A, Schindler, M, Chinnadurai, R, Pohlmann, S, et al. Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide. Cell 2007;129:263–75.Google Scholar
Forssmann, WG, The, YH, Stoll, M, Adermann, K, Albrecht, U, Tillmann, HC, Barlos, K, et al. Short-term monotherapy in HIV-infected patients with a virus entry inhibitor against the gp41 fusion peptide. Sci Transl Med 2010;2:63.Google Scholar
Janciauskiene, SM, Bals, R, Koczulla, R, Vogelmeier, C, Kohnlein, T, Welte, T. The discovery of alpha1-antitrypsin and its role in health and disease. Respir Med 2011;105:1129–39.Google Scholar
Perlmutter, DH, Cole, FS, Kilbridge, P, Rossing, TH, Colten, HR. Expression of the alpha 1-proteinase inhibitor gene in human monocytes and macrophages. Proc Natl Acad Sci U S A 1985;82:795–9.Google Scholar
Koopman, P, Povey, S, Lovell-Badge, RH. Widespread expression of human alpha 1-antitrypsin in transgenic mice revealed by in situ hybridization. Genes Dev 1989;3:1625.Google Scholar
Carlson, JA, Rogers, BB, Sifers, RN, Hawkins, HK, Finegold, MJ, Woo, SL. Multiple tissues express alpha 1-antitrypsin in transgenic mice and man. J Clin Invest 1988;82:2636.Google Scholar
Sidhar, SK, Lomas, DA, Carrell, RW, Foreman, RC. Mutations which impede loop/sheet polymerization enhance the secretion of human alpha 1-antitrypsin deficiency variants. J Biol Chem 1995;270:8393–6.Google Scholar
Carrell, RW, Lomas, DA. Conformational disease. Lancet 1997;350:134–8.CrossRefGoogle ScholarPubMed
Lomas, DA, Evans, DL, Finch, JT, Carrell, RW. The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature 1992;357:605–7.Google Scholar
Lomas, DA, Elliott, PR, Sidhar, SK, Foreman, RC, Finch, JT, Cox, DW, Whisstock, JC, et al. alpha 1-Antitrypsin Mmalton (Phe52-deleted) forms loop-sheet polymers in vivo. Evidence for the C sheet mechanism of polymerization. J Biol Chem 1995;270:16864–70.Google Scholar
Lomas, DA, Finch, JT, Seyama, K, Nukiwa, T, Carrell, RW. Alpha 1-antitrypsin Siiyama (Ser53–>Phe). Further evidence for intracellular loop-sheet polymerization. J Biol Chem 1993;268:15333–5.Google Scholar
Curiel, DT, Holmes, MD, Okayama, H, Brantly, ML, Vogelmeier, C, Travis, WD, Stier, LE, et al. Molecular basis of the liver and lung disease associated with the alpha 1-antitrypsin deficiency allele Mmalton. J Biol Chem 1989;264:13938–45.Google Scholar
Mahadeva, R, Chang, WS, Dafforn, TR, Oakley, DJ, Foreman, RC, Calvin, J, Wight, DG, et al. Heteropolymerization of S, I, and Z alpha1-antitrypsin and liver cirrhosis. J Clin Invest 1999;103:9991006.Google Scholar
Dafforn, TR, Mahadeva, R, Elliott, PR, Sivasothy, P, Lomas, DA. A kinetic mechanism for the polymerization of alpha1-antitrypsin. J Biol Chem 1999;274:9548–55.Google Scholar
Yamasaki, M, Li, W, Johnson, DJ, Huntington, JA. Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature 2008;455:1255–8.Google Scholar
Whisstock, JC, Silverman, GA, Bird, PI, Bottomley, SP, Kaiserman, D, Luke, CJ, Pak, SC, et al. Serpins flex their muscle: II. Structural insights into target peptidase recognition, polymerization, and transport functions. J Biol Chem 2010;285:24307–12.Google Scholar
Yamasaki, M, Sendall, TJ, Pearce, MC, Whisstock, JC, Huntington, JA. Molecular basis of alpha1-antitrypsin deficiency revealed by the structure of a domain-swapped trimer. EMBO Rep 2011;12:1011–17.Google Scholar
Huang, X, Zheng, Y, Zhang, F, Wei, Z, Wang, Y, Carrell, RW, Read, RJ, et al. Molecular mechanism of Z alpha1-antitrypsin deficiency. J Biol Chem 2016;291:15674–86.Google Scholar
Lin, L, Schmidt, B, Teckman, J, Perlmutter, DH. A naturally occurring nonpolymerogenic mutant of alpha 1-antitrypsin characterized by prolonged retention in the endoplasmic reticulum. J Biol Chem 2001;276:33893–8.Google Scholar
Schmidt, BZ, Perlmutter, DH. Grp78, Grp94, and Grp170 interact with alpha1-antitrypsin mutants that are retained in the endoplasmic reticulum. Am J Physiol Gastrointest Liver Physiol 2005;289:G444–55.Google Scholar
Kuznetsov, G, Nigam, SK. Folding of secretory and membrane proteins. N Engl J Med 1998;339:1688–95.Google Scholar
Davis, RL, Shrimpton, AE, Holohan, PD, Bradshaw, C, Feiglin, D, Collins, GH, Sonderegger, P, et al. Familial dementia caused by polymerization of mutant neuroserpin. Nature 1999;401:376–9.Google Scholar
Perlmutter DH. Alpha-1-antitrypsin deficiency: importance of proteasomal and autophagic degradative pathways in disposal of liver disease-associated protein aggregates. Annu Rev Med 2011;62:333–45.Google Scholar
Wu, Y, Whitman, I, Molmenti, E, Moore, K, Hippenmeyer, P, Perlmutter, DH. A lag in intracellular degradation of mutant alpha 1-antitrypsin correlates with the liver disease phenotype in homozygous PiZZ alpha 1-antitrypsin deficiency. Proc Natl Acad Sci U S A 1994;91:9014–18.Google Scholar
Kamimoto, T, Shoji, S, Hidvegi, T, Mizushima, N, Umebayashi, K, Perlmutter, DH, Yoshimori, T. Intracellular inclusions containing mutant alpha1-antitrypsin Z are propagated in the absence of autophagic activity. J Biol Chem 2006;281:4467–76.Google Scholar
Kruse, KB, Brodsky, JL, McCracken, AA. Characterization of an ERAD gene as VPS30/ATG6 reveals two alternative and functionally distinct protein quality control pathways: one for soluble Z variant of human alpha-1 proteinase inhibitor (A1PiZ) and another for aggregates of A1PiZ. Mol Biol Cell 2006;17:203–12.Google Scholar
Kruse, KB, Dear, A, Kaltenbrun, ER, Crum, BE, George, PM, Brennan, SO, McCracken, AA. Mutant fibrinogen cleared from the endoplasmic reticulum via endoplasmic reticulum-associated protein degradation and autophagy: an explanation for liver disease. Am J Pathol 2006;168:1299–308.Google Scholar
Cabral, CM, Choudhury, P, Liu, Y, Sifers, RN. Processing by endoplasmic reticulum mannosidases partitions a secretion-impaired glycoprotein into distinct disposal pathways. J Biol Chem 2000;275:25015–22.Google Scholar
Gelling, CL, Dawes, IW, Perlmutter, DH, Fisher, EA, Brodsky, JL. The endosomal protein-sorting receptor sortilin has a role in trafficking alpha-1 antitrypsin. Genetics 2012;192:889903.Google Scholar
Long, OS, Benson, JA, Kwak, JH, Luke, CJ, Gosai, SJ, O’Reilly, LP, Wang, Y, et al. A C. elegans model of human alpha1-antitrypsin deficiency links components of the RNAi pathway to misfolded protein turnover. Hum Mol Genet 2014;23:5109–22.Google Scholar
Mizushima, N, Yamamoto, A, Matsui, M, Yoshimori, T, Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004;15:1101–11.Google Scholar
Hidvegi, T, Mirnics, K, Hale, P, Ewing, M, Beckett, C, Perlmutter, DH. Regulator of G signaling 16 is a marker for the distinct endoplasmic reticulum stress state associated with aggregated mutant alpha1-antitrypsin Z in the classical form of alpha1-antitrypsin deficiency. J Biol Chem 2007;282:27769–80.Google Scholar
Hidvegi, T, Schmidt, BZ, Hale, P, Perlmutter, DH. Accumulation of mutant alpha1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NFkappaB, and BAP31 but not the unfolded protein response. J Biol Chem 2005;280:39002–15.Google Scholar
Mukherjee, A, Hidvegi, T, Araya, P, Ewing, M, Stolz, DB, Perlmutter, DH. NFkappaB mitigates the pathological effects of misfolded alpha1-antitrypsin by activating autophagy and an integrated program of proteostasis mechanisms. Cell Death Differ 2019;26(3):455–69.Google Scholar
Liao, Y, Shikapwashya, ON, Shteyer, E, Dieckgraefe, BK, Hruz, PW, Rudnick, DA. Delayed hepatocellular mitotic progression and impaired liver regeneration in early growth response-1-deficient mice. J Biol Chem 2004;279:43107–16.Google Scholar
Teckman, JH, An, JK, Blomenkamp, K, Schmidt, B, Perlmutter, D. Mitochondrial autophagy and injury in the liver in alpha 1-antitrypsin deficiency. Am J Physiol Gastrointest Liver Physiol 2004;286:G851–62.Google Scholar
Hidvegi, T, Stolz, DB, Alcorn, JF, Yousem, SA, Wang, J, Leme, AS, Houghton, AM, et al. Enhancing autophagy with drugs or lung-directed gene therapy reverses the pathological effects of respiratory epithelial cell proteinopathy. J Biol Chem 2015;290:29742–57.Google Scholar
Pastore, N, Attanasio, S, Granese, B, Castello, R, Teckman, J, Wilson, AA, Ballabio, A, et al. Activation of the c-Jun N-terminal kinase pathway aggravates proteotoxicity of hepatic mutant Z alpha1-antitrypsin. Hepatology 2017;65:1865–74.Google Scholar
Pan, S, Huang, L, McPherson, J, Muzny, D, Rouhani, F, Brantly, M, Gibbs, R, et al. Single nucleotide polymorphism-mediated translational suppression of endoplasmic reticulum mannosidase I modifies the onset of end-stage liver disease in alpha1-antitrypsin deficiency. Hepatology 2009;50:275–81.Google Scholar
Pan, S, Wang, S, Utama, B, Huang, L, Blok, N, Estes, MK, Moremen, KW, et al. Golgi localization of ERManI defines spatial separation of the mammalian glycoprotein quality control system. Mol Biol Cell 2011;22:2810–22.Google Scholar
Iannotti, MJ, Figard, L, Sokac, AM, Sifers, RN. A Golgi-localized mannosidase (MAN1B1) plays a non-enzymatic gatekeeper role in protein biosynthetic quality control. J Biol Chem 2014;289:11844–58.Google Scholar
Chappell, S, Guetta-Baranes, T, Hadzic, N, Stockley, R, Kalsheker, N. Polymorphism in the endoplasmic reticulum mannosidase I (MAN1B1) gene is not associated with liver disease in individuals homozygous for the Z variant of the alpha1-antitrypsin protease inhibitor (PiZZ individuals). Hepatology 2009;50:1315, author reply 1315–16.Google Scholar
Joly, P, Lachaux, A, Ruiz, M, Restier, L, Belmalih, A, Chapuis-Cellier, C, Francina, A, et al. SERPINA1 and MAN1B1 polymorphisms are not linked to severe liver disease in a French cohort of alpha-1 antitrypsin deficiency children. Liver Int 2017;37:1608–11.CrossRefGoogle ScholarPubMed
Chappell, S, Hadzic, N, Stockley, R, Guetta-Baranes, T, Morgan, K, Kalsheker, N. A polymorphism of the alpha1-antitrypsin gene represents a risk factor for liver disease. Hepatology 2008;47:127–32.Google Scholar
Hubner, RH, Leopold, PL, Kiuru, M, De, BP, Krause, A, Crystal, RG. Dysfunctional glycogen storage in a mouse model of alpha1-antitrypsin deficiency. Am J Respir Cell Mol Biol 2009;40:239–47.Google Scholar
Piccolo, P, Annunziata, P, Soria, LR, Attanasio, S, Barbato, A, Castello, R, Carissimo, A, et al. Down-regulation of hepatocyte nuclear factor-4alpha and defective zonation in livers expressing mutant Z alpha1-antitrypsin. Hepatology 2017;66:124–35.Google Scholar
Teckman, J, Perlmutter, DH. Conceptual advances in the pathogenesis and treatment of childhood metabolic liver disease.Gastroenterology 1995;108:1263–79.Google Scholar
Tafaleng, EN, Chakraborty, S, Han, B, Hale, P, Wu, W, Soto-Gutierrez, A, Feghali-Bostwick, CA, et al. Induced pluripotent stem cells model personalized variations in liver disease resulting from alpha1-antitrypsin deficiency. Hepatology 2015;62:147–57.Google Scholar
Lindblad, D, Blomenkamp, K, Teckman, J. Alpha-1-antitrypsin mutant Z protein content in individual hepatocytes correlates with cell death in a mouse model. Hepatology 2007;46:1228–35.Google Scholar
Dooley, S, Hamzavi, J, Ciuclan, L, Godoy, P, Ilkavets, I, Ehnert, S, Ueberham, E, et al. Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage. Gastroenterology 2008;135:642–59.Google Scholar
Bridges, JP, Wert, SE, Nogee, LM, Weaver, TE. Expression of a human surfactant protein C mutation associated with interstitial lung disease disrupts lung development in transgenic mice. J Biol Chem 2003;278:52739–46.Google Scholar
Young, LR, Gulleman, PM, Bridges, JP, Weaver, TE, Deutsch, GH, Blackwell, TS, McCormack, FX. The alveolar epithelium determines susceptibility to lung fibrosis in Hermansky-Pudlak syndrome. Am J Respir Crit Care Med 2012;186:1014–24.Google Scholar
Bhuiyan, MS, Pattison, JS, Osinska, H, James, J, Gulick, J, McLendon, PM, Hill, JA, et al. Enhanced autophagy ameliorates cardiac proteinopathy. J Clin Invest 2013;123:5284–97.Google Scholar
Doppler, K, Mittelbronn, M, Lindner, A, Bornemann, A. Basement membrane remodelling and segmental fibrosis in sporadic inclusion body myositis. Neuromuscul Disord 2009;19:406–11.Google Scholar
Nogalska, A, D’Agostino, C, Terracciano, C, Engel, WK, Askanas, V. Impaired autophagy in sporadic inclusion-body myositis and in endoplasmic reticulum stress-provoked cultured human muscle fibers. Am J Pathol 2010;177:1377–87.CrossRefGoogle ScholarPubMed
Rudnick, DA, Liao, Y, An, JK, Muglia, LJ, Perlmutter, DH, Teckman, JH. Analyses of hepatocellular proliferation in a mouse model of alpha-1-antitrypsin deficiency. Hepatology 2004;39:1048–55.Google Scholar
Rudnick, DA, Perlmutter, DH. Alpha-1-antitrypsin deficiency: a new paradigm for hepatocellular carcinoma in genetic liver disease. Hepatology 2005;42:514–21.Google Scholar
Ding, J, Yannam, GR, Roy-Chowdhury, N, Hidvegi, T, Basma, H, Rennard, SI, Wong, RJ, et al. Spontaneous hepatic repopulation in transgenic mice expressing mutant human alpha1-antitrypsin by wild-type donor hepatocytes. J Clin Invest 2011;121:1930–4.Google Scholar
Kemmer, N, Kaiser, T, Zacharias, V, Neff, GW. Alpha-1-antitrypsin deficiency: outcomes after liver transplantation. Transplant Proc 2008;40:1492–4.Google Scholar
Tannuri, AC, Gibelli, NE, Ricardi, LR, Santos, MM, Maksoud-Filho, JG, Pinho-Apezzato, ML, Silva, MM, et al. Living related donor liver transplantation in children. Transplant Proc 2011;43:161–4.Google Scholar
Sarkar, S, Perlstein, EO, Imarisio, S, Pineau, S, Cordenier, A, Maglathlin, RL, Webster, JA, et al. Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol 2007;3:331–8.Google Scholar
Li, C, Xiao, P, Gray, SJ, Weinberg, MS, Samulski, RJ. Combination therapy utilizing shRNA knockdown and an optimized resistant transgene for rescue of diseases caused by misfolded proteins. Proc Natl Acad Sci U S A 2011;108:14258–63.Google Scholar
Mueller, C, Tang, Q, Gruntman, A, Blomenkamp, K, Teckman, J, Song, L, Zamore, PD, et al. Sustained miRNA-mediated knockdown of mutant AAT with simultaneous augmentation of wild-type AAT has minimal effect on global liver miRNA profiles. Mol Ther 2012;20:590600.Google Scholar
Guo, S, Booten, SL, Aghajan, M, Hung, G, Zhao, C, Blomenkamp, K, Gattis, D, et al. Antisense oligonucleotide treatment ameliorates alpha-1 antitrypsin-related liver disease in mice. J Clin Invest 2014;124:251–61.Google Scholar
Pastore, N, Blomenkamp, K, Annunziata, F, Piccolo, P, Mithbaokar, P, Maria Sepe, R, Vetrini, F, et al. Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in alpha-1-anti-trypsin deficiency. EMBO Mol Med 2013;5:397412.Google Scholar
Shen, S, Sanchez, ME, Blomenkamp, K, Corcoran, EM, Marco, E, Yudkoff, CJ, Jiang, H, et al. Amelioration of alpha-1 antitrypsin deficiency diseases with genome editing in transgenic mice. Hum Gene Ther 2018;29(8):861–73.Google Scholar
Song, CQ, Wang, D, Jiang, T, O’Connor, K, Tang, Q, Cai, L, Li, X, et al. In vivo genome editing partially restores alpha1-antitrypsin in a murine model of AAT deficiency. Hum Gene Ther 2018;29(8):853–60.Google Scholar
Mallya, M, Phillips, RL, Saldanha, SA, Gooptu, B, Brown, SC, Termine, DJ, Shirvani, AM, et al. Small molecules block the polymerization of Z alpha1-antitrypsin and increase the clearance of intracellular aggregates. J Med Chem 2007;50:5357–63.Google Scholar
Alam, S, Wang, J, Janciauskiene, S, Mahadeva, R. Preventing and reversing the cellular consequences of Z alpha-1 antitrypsin accumulation by targeting s4A. J Hepatol 2012;57:116–24.Google Scholar
Burrows, JA, Willis, LK, Perlmutter, DH. Chemical chaperones mediate increased secretion of mutant alpha 1-antitrypsin (alpha 1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in alpha 1-AT deficiency. Proc Natl Acad Sci U S A 2000;97:1796–801.Google Scholar
Teckman, JH. Lack of effect of oral 4-phenylbutyrate on serum alpha-1-antitrypsin in patients with alpha-1-antitrypsin deficiency: a preliminary study. J Pediatr Gastroenterol Nutr 2004;39:34–7.Google Scholar
Bouchecareilh, M, Hutt, DM, Szajner, P, Flotte, TR, Balch, WE. Histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA)-mediated correction of alpha1-antitrypsin deficiency. J Biol Chem 2012;287:38265–78.Google Scholar
Fox, IJ, Chowdhury, JR, Kaufman, SS, Goertzen, TC, Chowdhury, NR, Warkentin, PI, Dorko, K, et al. Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med 1998;338:1422–6.Google Scholar
Yusa, K, Rashid, ST, Strick-Marchand, H, Varela, I, Liu, PQ, Paschon, DE, Miranda, E, et al. Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 2011;478:391–4.Google Scholar

References

Kosorok, MR, Wei, WH, Farrell, PM. The incidence of cystic fibrosis. Stat Med 1996;15:449–62.Google Scholar
Dodge, JA, Morison, S, Lewis, PA, et al. Incidence, population, and survival of cystic fibrosis in the UK, 1968–95. UK Cystic Fibrosis Survey Management Committee. Arch Dis Child 1997;77:493–6.Google ScholarPubMed
Anderson, D. Cystic fibrosis of the pancreas and its relation to celiac disease: a clinical and pathological study. Am J Dis Child 1938;56(2):344–99.Google Scholar
Quinton, PM. Chloride impermeability in cystic fibrosis. Nature 1983;301 (5899):421–2.Google Scholar
Riordan, JR, Rommens, JM, Kerem, B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989;245 (4922):1066–73.Google Scholar
Schwiebert, EM, Benos, DJ, Egan, ME, Stutts, MJ, Guggino, WB. CFTR is a conductance regulator as well as a chloride channel. Physiol Rev 1999;79(1 Suppl):S145S166.Google Scholar
Gabriel, SE, Clarke, LL, Boucher, RC, Stutts, MJ. CFT R and outward rectifying chloride channels are distinct proteins with a regulatory relationship. Nature 1993;363(6426):263–8.Google Scholar
Dutta, AK, Khimji, AK, Kresge, C, et al. Identification and functional characterization of TMEM16A, a Ca2+-activated Cl channel activated by extracellular nucleotides in biliary epithelium. J Biol Chem 2011;286: 766–76.Google Scholar
Li, Q, Kresge, C, Bugde, A, Lamphere, M, Park, JY, Feranchak, AP. Regulation of mechanosensitive biliary epithelial transport by the epithelial Na(+) channel. Hepatology 2016;63(2):538–49. doi:10.1002/hep.28301Google Scholar
Braunstein, GM, Roman, RM, Clancy, JP, et al. Cystic fibrosis transmembrane conductance regulator facilitates ATP release by stimulating a separate ATP release channel for autocrine control of cell volume regulation. J Biol Chem 2001;276:6621–30.Google Scholar
Fouassier, L, Duan, CY, Feranchak, AP, et al. Ezrin-radixin-moesin-binding phosphoprotein 50 is expressed at the apical membrane of rat liver epithelia. Hepatology 2001;33:166–76.Google Scholar
Cohn, JA, Strong, TV, Picciotto, MR, et al. Localization of the cystic fibrosis transmembrane conductance regulator in human bile duct epithelial cells. Gastroenterology 1993;105:1857–64.Google Scholar
Fitz, JG, Basavappa, S, McGill, J, Melhus, O, Cohn, JA. Regulation of membrane chloride currents in rat bile duct epithelial cells. J Clin Invest 1993;91:319–28.Google Scholar
Fitz, JG. (1996). Cellular mechanisms of bile secretion. In Zakim, D, Boyer, TD (Eds.), Hepatology, 3rd edn (pp. 362–76). Philadelphia, PA: Saunders.Google Scholar
Dutta, AK, Khimji, AK, Sathe, M, et al. Identification and functional characterization of the intermediate-conductance Ca(2+)-activated K(+) channel (IK-1) in biliary epithelium. Am J Physiol Gastrointest Liver Physiol 2009;297:G1009G1018.Google Scholar
Feranchak, AP, Sokol, RJ. Cholangiocyte biology and cystic fibrosis liver disease. Sem Liv Disease 2001;21:471–88.Google Scholar
Clarke, LL, Grubb, BR, Yankaskas, JR, et al. Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr(–/–) mice. Proc Natl Acad Sci USA 1994;91:479–83.Google Scholar
Dutta, AK, Khimji, AK, Kresge, C, Bugde, A, Dougherty, M, Esser, V, Ueno, Y, Glaser, SS, Alpini, G, Rockey, DC, Feranchak, AP. Identification and functional characterization of TMEM16A, a Ca2+-activated Cl channel activated by extracellular nucleotides, in biliary epithelium. J Biol Chem. 2011 Jan 7;286(1):766–76. doi: 10.1074/jbc.M110.164970. Epub 2010 Nov 1. https://pubmed.ncbi.nlm.nih.gov/21041307/Google Scholar
Feranchak, AP, Fitz, JG. Adenosine triphosphate release and purinergic regulation of cholangiocyte transport. Semin Liver Dis 2002;22:251–62.Google Scholar
Dutta, AK, Woo, K, Doctor, RB, Fitz, JG, Feranchak, AP. Extracellular nucleotides stimulate Cl currents in biliary epithelia through receptor-mediated IP3 and Ca2+ release. Am J Physiol Gastrointest Liver Physiol 2008;295:G1004G1015.Google Scholar
Woo, K, Dutta, AK, Patel, V, Kresge, C, Feranchak, AP. Fluid flow induces mechanosensitive ATP release, calcium signalling and Cl transport in biliary epithelial cells through a PKCzeta-dependent pathway. J Physiol 2008;586(Pt 11):2779–98.Google Scholar
Fiorotto, R, Scirpo, R, Trauner, M, et al. Loss of CFTR affects biliary epithelium innate immunity and causes TLR4–NF-κB: mediated inflammatory response in mice. Gastroenterology 2011;141(4):1498–508.e5. doi:10.1053/j.gastro.2011.06.052Google Scholar
Fiorotto, R, Villani, A, Kourtidis, A, et al. The cystic fibrosis transmembrane conductance regulator controls biliary epithelial inflammation and permeability by regulating Src tyrosine kinase activity. Hepatology 2016;64(6):2118–34. doi:10.1002/hep.28817Google Scholar
Gabriel, SE, Brigman, KN, Koller, BH, Boucher, RC, Stutts, MJ. Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science 1994;266(5182):107–9.Google Scholar
Quinton, PM. Role of epithelial HCO3 transport in mucin secretion: lessons from cystic fibrosis. Am J Physiol Cell Physiol 2010;299:C1222C1233.Google Scholar
Debray, D, El Mourabit, H, Merabtene, F, et al. Diet-induced dysbiosis and genetic background synergize with cystic fibrosis transmembrane conductance regulator deficiency to promote cholangiopathy in mice. Hepatol Commun 2018;2(12):1533–49. doi:10.1002/hep4.1266Google Scholar
Scanlan, PD, Buckling, A, Kong, W, Wild, Y, Lynch, S V, Harrison, F. Gut dysbiosis in cystic fibrosis. J Cyst Fibros 2012;11(5):454–5. doi:10.1016/j.jcf.2012.03.007Google Scholar
Parisi, GF, Papale, M, Rotolo, N, et al. Severe disease in cystic fibrosis and fecal calprotectin levels. Immunobiology 2017;222(3):582–6. doi:10.1016/j.imbio.2016.11.005CrossRefGoogle ScholarPubMed
Blanco, PG, Zaman, MM, Junaidi, O, et al. Induction of colitis in cftr −/− mice results in bile duct injury. Am J Physiol Liver Physiol. 2004;287(2):G491G496. doi:10.1152/ajpgi.00452.2003Google Scholar
Flass, T, Tong, S, Frank, DN, et al. Intestinal lesions are associated with altered intestinal microbiome and are more frequent in children and young adults with cystic fibrosis and cirrhosis. PLoS One. 2015;10(2):e0116967. doi:10.1371/journal.pone.0116967Google Scholar
Smith, JL, Lewindon, PJ, Hoskins, AC, et al. Endogenous ursodeoxycholic acid and cholic acid in liver disease due to cystic fibrosis. Hepatology 2004;39:1673–82.Google Scholar
Brazova, J, Sediva, A, Pospisilova, D, et al. Differential cytokine profile in children with cystic fibrosis. Clin Immunol. 2005;115(2):210–15. doi:10.1016/j.clim.2005.01.013Google Scholar
Jacquot, J, Tabary, O, Le Rouzic, P, Clement, A. Airway epithelial cell inflammatory signalling in cystic fibrosis. Int J Biochem Cell Biol. 2008;40(9):1703–15. doi:10.1016/j.biocel.2008.02.002Google Scholar
Paats, MS, Bergen, IM, Bakker, M, et al. Cytokines in nasal lavages and plasma and their correlation with clinical parameters in cystic fibrosis. J Cyst Fibros. 2013;12(6):623–9. doi:10.1016/j.jcf.2013.05.002Google Scholar
McGill, JM, Yen, MS, Cummings, OW, et al. Interleukin-5 inhibition of biliary cell chloride currents and bile flow. Am J Physiol Gastrointest Liver Physiol 2001;280(4):G738–45. doi:10.1152/ajpgi.2001.280.4.G738Google Scholar
Spirlì, C, Fabris, L, Duner, E, et al. Cytokine-stimulated nitric oxide production inhibits adenylyl cyclase and cAMP-dependent secretion in cholangiocytes. Gastroenterology 2003;124(3):737–53. doi:10.1053/gast.2003.50100Google Scholar
Spirlì, C, Nathanson, MH, Fiorotto, R, et al. Proinflammatory cytokines inhibit secretion in rat bile duct epithelium. Gastroenterology 2001;121(1):156–69. doi:10.1053/gast.2001.25516Google Scholar
Sun, H, Harris, WT, Kortyka, S, et al. Tgf-beta downregulation of distinct chloride channels in cystic fibrosis-affected epithelia. PLoS One. 2014;9(9):e106842. doi:10.1371/journal.pone.0106842Google Scholar
Lewindon, PJ, Pereira, TN, Hoskins, AC, et al. The role of hepatic stellate cells and transforming growth factor-beta(1) in cystic fibrosis liver disease. Am J Pathol 2002;160:1705–15.Google Scholar
Fiorotto, R, Amenduni, M, Mariotti, V, et al. Animal models for cystic fibrosis liver disease. Biochim Biophys Acta – Mol Basis Dis 2019;1865(5):965–9. doi:10.1016/j.bbadis.2018.07.026Google Scholar
Bartlett, JR, Friedman, KJ, Ling, SC, et al. Genetic modifiers of liver disease in cystic fibrosis. JAMA 2009;302:1076–83.Google Scholar
Duthie, A, Doherty, DG, Donaldson, PT, et al. The major histocompatibility complex influences the development of chronic liver disease in male children and young adults with cystic fibrosis. J Hepatol 1995;23:532–7.Google Scholar
Cystic Fibrosis Foundation (CFF). 2017 Patient Registry: Annual Data Report. Cyst Fibros Found Patient Regist. 2017:92.Google Scholar
Vawter, GF, Shwachman, H. Cystic fibrosis in adults: an autopsy study. Pathol Annu 1979;14:357–82.Google Scholar
Debray, D, Kelly, D, Houwen, R, Strandvik, B, Colombo, C. Best practice guidance for the diagnosis and management of cystic fibrosis-associated liver disease. J Cyst Fibros 2011;10:S29S36.Google Scholar
Boëlle, P, Debray, D, Guillot, L, et al. Cystic fibrosis liver disease: outcomes and risk factors in a large cohort of French patients. Hepatology 2019;69(4):1648–56. doi:http://dx.doi.org/10.1002/hep.30148Google Scholar
Koh, C, Sakiani, S, Surana, P, et al. Adult-onset cystic fibrosis liver disease: diagnosis and characterization of an underappreciated entity. Hepatology 2017;66(2):591601. doi:https://dx.doi.org/10.1002/hep.29217Google Scholar
Colombo, C, Apostolo, MG, Ferrari, M, et al. Analysis of risk factors for the development of liver disease associated with cystic fibrosis. J Pediatr 1994;124:393–9.Google Scholar
Sokol, RJ, Durie, PR. Recommendations for management of liver and biliary tract disease in cystic fibrosis. Cystic Fibrosis Foundation Hepatobiliary Disease Consensus Group. J Pediatr Gastroenterol Nutr 1999;28(Suppl1):S1S13.Google Scholar
Flass, T, Narkewicz, MR. Cirrhosis and other liver disease in cystic fibrosis. J Cyst Fibros. 2013;12(2):116–24. doi:https://dx.doi.org/10.1016/j.jcf.2012.11.010Google Scholar
Sokol, RJ, Carroll, NM, Narkewicz, MR, et al. Liver blood tests during the first decade of life in children with cystic fibrosis identified by newborn screening. Pediatr Pulm 1994;10:275.Google Scholar
Woodruff, SA, Sontag, MK, Accurso, FJ, Sokol, RJ, Narkewicz, MR. Prevalence of elevated liver enzymes in children with cystic fibrosis diagnosed by newborn screen. J Cyst Fibros 2017;16(1):139–45. doi:https://dx.doi.org/10.1016/j.jcf.2016.08.002Google Scholar
Loverdos, I, Gonska, T, Ling, SC. Platelet count enables early diagnosis of cystic fibrosis liver disease (Conference Workshop WS17.3). J Cyst Fibros. 2016;15:S28.Google Scholar
Patriquin, H, Lenaerts, C, Smith, L, et al. Liver disease in children with cystic fibrosis: US-biochemical comparison in 195 patients. Radiology 1999;211: 229–32.Google Scholar
Lenaerts, C, Lapierre, C, Patriquin, H, et al. Surveillance for cystic fibrosis- associated hepatobiliary disease: early ultrasound changes and predisposing factors. J Pediatr 2003;143:343–50.Google Scholar
Narkewicz, MR. Cystic fibrosis liver disease: what is it and what happens as a result. Pediatr Pulmonol 2018;53(Supplement2):81–2. doi:http://dx.doi.org/10.1002/ppul.24151Google Scholar
Ling, SC, Ye, W, Leung, DH, et al. Liver ultrasound patterns in children with cystic fibrosis correlate with non-invasive tests of liver disease. J Pediatr Gastroenterol Nutr 2019;69:351. doi:10.1097/mpg.0000000000002413Google Scholar
Ling, SC. The use of serum biomarkers and imaging in the diagnosis and prediction of outcomes in CF liver disease. Pediatr Pulmonol 2018;53(Supplement2):8586. doi:http://dx.doi.org/10.1002/ppul.24151Google Scholar
Sathe, MN, Freeman, AJ. Gastrointestinal, pancreatic, and hepatobiliary manifestations of cystic fibrosis. Pediatr Clin North Am 2016;63(4):679–98. doi:https://dx.doi.org/10.1016/j.pcl.2016.04.008Google Scholar
Aqul, A, Jonas, MM, Harney, S, et al. Correlation of transient elastography with severity of cystic fibrosis-related liver disease. J Pediatr Gastroenterol Nutr 2017;64(4):505–11. doi:https://dx.doi.org/10.1097/MPG.0000000000001448Google Scholar
Gominon, A-L, Frison, E, Hiriart, J-B, et al. Assessment of liver disease progression in cystic fibrosis using transient elastography. J Pediatr Gastroenterol Nutr 2018;66(3):455–60. doi:https://dx.doi.org/10.1097/MPG.0000000000001822Google Scholar
Lewindon, PJ, Puertolas-Lopez, MV. , Ramm, LE, et al. Accuracy of transient elastography data combined with APRI in detection and staging of liver disease in pediatric patients with cystic fibrosis. Clin Gastroenterol Hepatol 2019. doi:10.1016/j.cgh.2019.03.015Google Scholar
Leung, DH, Khan, M, Minard, CG, et al. Aspartate aminotransferase to platelet ratio and fibrosis-4 as biomarkers in biopsy-validated pediatric cystic fibrosis liver disease. Hepatology 2015;62(5):1576–83. doi:https://dx.doi.org/10.1002/hep.28016Google Scholar
Ling, SC, Ye, W, Leung, DH, et al. Baseline liver echotexture in children with cystic fibrosis predicts changes over time in non-invasive biomarkers of fibrosis and portal hypertension. J Pediatr Gastroenterol Nutr 2017;65(Supplement 1):77A-78A. doi:http://dx.doi.org/10.1097/MPG.0000000000001805Google Scholar
Cook, NL, Pereira, TN, Lewindon, PJ, Shepherd, RW, Ramm, GA. Circulating microRNAs as noninvasive diagnostic biomarkers of liver disease in children with cystic fibrosis. J Pediatr Gastroenterol Nutr 2015;60(2):247–54. doi:10.1097/MPG.0000000000000600Google Scholar
Heuman, DM. Hepatoprotective properties of ursodeoxycholic acid. Gastroenterology 1993;104:1865–70.Google Scholar
Shimokura, GH, McGill, JM, Schlenker, T, Fitz, JG. Ursodeoxycholate increases cytosolic calcium concentration and activates Cl currents in a biliary cell line. Gastroenterology 1995;109:965–72.Google Scholar
Colombo, C, Crosignani, A, Assaisso, M, et al. Ursodeoxycholic acid therapy in cystic fibrosis-associated liver disease: a dose-response study. Hepatology 1992;16:924–30.Google Scholar
Lindblad, A, Glaumann, H, Strandvik, B. A two-year prospective study of the effect of ursodeoxycholic acid on urinary bile acid excretion and liver morphology in cystic fibrosis-associated liver disease. Hepatology 1998;27:166–74.Google Scholar
Nousia-Arvanitakis, S, Fotoulaki, M, Economou, H, Xefteri, M, Galli-Tsinopoulou, A. Long-term prospective study of the effect of ursodeoxycholic acid on cystic fibrosis-related liver disease. J Clin Gastroenterol 2001;32:324–8.Google Scholar
Lindor, KD, Kowdley, KV, Luketic, VA, et al. High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology 2009;50:808–14.Google Scholar
Gong, Y, Huang, ZB, Christensen, E, Gluud, C. Ursodeoxycholic acid for primary biliary cirrhosis. Cochrane Database Syst Rev 2008;8:CD000551.Google Scholar
Ooi, CY, Nightingale, S, Durie, PR, Freedman, SD. Ursodeoxycholic acid in cystic fibrosis-associated liver disease. J Cyst Fibros 2012;11:72–3.Google Scholar
Cheng, K, Ashby, D, Smyth, RL. Ursodeoxycholic acid for cystic fibrosis-related liver disease. Cochrane Database Syst Rev 2017;9:CD000222. doi:https://dx.doi.org/10.1002/14651858.CD000222.pub4Google Scholar
Ye, W, Narkewicz, MR, Leung, DH, et al. Variceal hemorrhage and adverse liver outcomes in patients with cystic fibrosis cirrhosis. J Pediatr Gastroenterol Nutr 2018;66(1):122–7. doi:https://dx.doi.org/10.1097/MPG.0000000000001728Google Scholar
Lemoine, C, Lokar, J, McColley, SA, Alonso, EM, Superina, R. Cystic fibrosis and portal hypertension: Distal splenorenal shunt can prevent the need for future liver transplant. J Pediatr Surg 2019. doi:http://dx.doi.org/10.1016/j.jpedsurg.2019.01.035Google Scholar
Molleston, J. Medical and surgical management of complication of portal hypertension in CF. Pediatr Pulmonol 2018;53:S84–5.Google Scholar
Gridelli, B. Liver: benefit of liver transplantation in patients with cystic fibrosis. Nat Rev Gastroenterol Hepatol 2011;8:187–8.Google Scholar
Yang, Y, Raper, SE, Cohn, JA, Engelhardt, JF, Wilson, JM. An approach for treating the hepatobiliary disease of cystic fibrosis by somatic gene transfer. Proc Natl Acad Sci USA 1993;90:4601–5.Google Scholar
Becq, F, Mall, MA, Sheppard, DN, Conese, M, Zegarra-Moran, O. Pharmacological therapy for cystic fibrosis: from bench to bedside.J Cyst Fibros 2011;10(Suppl2):S129S145.Google Scholar
Hayes, D, Warren, PS, McCoy, KS, Sheikh, SI. Improvement of hepatic steatosis in cystic fibrosis with ivacaftor therapy. J Pediatr Gastroenterol Nutr 2015;60(5):578–9. doi:10.1097/MPG.0000000000000765Google Scholar
Chaudary, N. Triplet CFTR modulators: future prospects for treatment of cystic fibrosis. Ther Clin Risk Manag 2018;14:2375–83. doi:10.2147/TCRM.S147164Google Scholar
Bodewes, FAJA, van der Wulp, MYM, Beharry, S, et al. Altered intestinal bile salt biotransformation in a cystic fibrosis (Cftr−/−) mouse model with hepato-biliary pathology. J Cyst Fibros 2015;14(4):440–6. doi:10.1016/j.jcf.2014.12.010Google Scholar
Van de Peppel, IP, Bodewes, FAJA, Verkade, HJ, Jonker, JW. Bile acid homeostasis in gastrointestinal and metabolic complications of cystic fibrosis. J Cyst Fibros. 2019;18(3):313–20. doi:10.1016/j.jcf.2018.08.009Google Scholar
Wiest, R, Albillos, A, Trauner, M, Bajaj, JS, Jalan, R. Targeting the gut-liver axis in liver disease. J Hepatol 2017;67(5):1084–103. doi:10.1016/j.jhep.2017.05.007CrossRefGoogle ScholarPubMed

References

Mason, HH, Turner, ME. Chronic galactosemia. Am J Dis Child 1935;50:359.Google Scholar
Wada, Y, Kikuchi, A, Arai-Ichinoi, N, Sakamoto, O, Takezawa, Y, Iwasawa, S, Niihori, T Nyuzuki, H. U. A.: biallelic GALM pathogenic variants cause a novel type of galactosemia. Genet Med 2019;6:1286–94.Google Scholar
Donnell, GN, Bergren, WR, Cleland, RS. Galactosemia. Pediatr Clin North Am 1960;7:315–32.Google Scholar
Gitzelmann, R. Hereditary galactokinase deficiency, a newly recognized cause of juvenile cataracts. Pediatr Res 1967;1:1423.Google Scholar
Gitzelmann, R, Steinmann, B, Mitchell, B, et al. Uridine diphosphate galactose-4- epimerase deficiency. IV. Report of eight cases in three families. Helv Paediatr Acta 1977;31:441–52.Google Scholar
Holton, JB, Gillett, MG, MacFaul, R, et al. Galactosemia: a new severe variant due to uridine diphosphate galactose-4-epimerase deficiency.Arch Dis Child 1981;56: 885–7.Google Scholar
Holton, JB. Galactosaemia: pathogenesis and treatment. J Inherit Metab Dis 1996;19:37.Google Scholar
Hopfer, U. (1987). Membrane transport mechanisms for hexoses and amino acids in the small intestine. In Johnson, LR, Christensen, J, Jackson, MJ (Eds.) Physiology of the Gastrointestinal Tract, 2nd edn. (pp. 1499–526). New York: Raven Press.Google Scholar
Timson, DJ. Type IV galactosemia. Genet Med 2019;21(6):1283–5.Google Scholar
Shin-Buehring, YS, Beier, T, Tan, A, et al. Galactokinase and galactose-1-phosphate uridyltransferase (transferase) and galactokinase in human fetal organs. Pediatr Res 1977;11:1012.Google Scholar
Coelho, AI, Rubio-Gozalbo, ME, Vicente, JB, Rivera, I. Sweet and sour: an update on classic galactosemia. J Inherit Metab Dis 2017;40(3):325–42.Google Scholar
Segal, S, Blair, A. Some observations on the metabolism of d-galactose in normal man. J Clin Invest 1961;40:2016–25.Google Scholar
Tygstrup, N. Determination of the hepatic elimination capacity (LM) of galactose by single injection. ScandJ Clin Lab Invest 1966;92(Suppl. 18):118–25.Google Scholar
Lemaire, HG, Muller-Hill, B. Nucleotide sequences of the gal E gene and the gal T gene of E. coli. Nucleic Acids Res 1986;14:7705–11.Google Scholar
Flach, JE, Reichardt, TKV, Elsas, LJ. Sequence of a cDNA encoding human galactose-1-phosphate uridyl transferase. Mol Biol Med 1990;7:365–9.Google Scholar
Field, TL, Reznikoff, WS, Frey, PA. Galactose-1-phosphate uridylyltransferase: identification of histidine-164 and histidine-166 as critical residues by site-directed mutagenesis. Biochemistry 1989;28:2094–9.Google Scholar
Reichardt, JKV, Woo, SLC. Molecular basis of galactosemia: mutations and polymorphisms in the gene encoding human galactose-1-phosphate uridyl transferase. Proc Natl Acad Sci USA 1991;88:2633–7.Google Scholar
Calderon, FR, Pharsalker, AR, Crockett, DK, et al. Mutation database for the galactose-1-phosphate uridyltransferase (GALT) gene. Hum Mutat 2007;28:939–43.Google Scholar
Tyfield, L, Reichardt, J, Fridovich-Keil, J, et al. Classical galactosemia and mutations at the galactose-1-phosphate uridyl transferase (GALT) gene. Hum Mutat 1999;13:417–30.Google Scholar
Reichardt, JK, Levy, HL, Woo, SL. Molecular characterization of two galactosemia mutations and one polymorphism: implications for structure–function analysis of human galactose-1-phosphate uridyltransferase. Biochemistry 1992;31:5430–3.Google Scholar
Berry, GT. (1993). Classic galactosemia and clinical variant galactosemia. In Adam, MP, Ardinger, HH, Pagon, RA, Wallace, SE, Bean, LJ, Stephens, K, Amemiya, A. GeneReviews®. Seattle: University of Washington.Google Scholar
Wang, BB, Xu, YK, Ng, WG, et al. Molecular and biochemical basis of galactosemia. Mol Genet Metab 1998;63:263–9.Google Scholar
Welling, L, Bernstein, LE, Berry, GT, Burlina, AB, Eyskens, F, Gautschi, M, Grünewald, S, Gubbels, CS. International clinical guideline for the management of classical galactosemia: diagnosis, treatment, and follow-up. J Inherit Metab Dis 2017;40(2):171–6.Google Scholar
Levy, HL, Sepe, SJ, Shih, VE, et al. Sepsis due to Escherichia coli in neonates with galactosemia. N Engl J Med 1977;297:823–5.Google Scholar
Litchfield, WJ, Wells, WW. Effects of galactose on free radical reactions of polymorphonuclear leukocytes. Arch Biochem Biophys 1978;188:2630.Google Scholar
Segal, S, Blair, A, Roth, H. The metabolism of galactose by patients with congenital galactosemia. Am J Med 1965;38:6270.Google Scholar
Segal, S. (1989). Disorders of galactose metabolism. In Stanbury, JB, Wyngaarden, JB, Frederickson, DS (Eds.) The Metabolic Basis of Inherited Disease, 6th edn. (pp. 453–80). New York: McGraw- Hill.Google Scholar
Belman, AL, Moshe, SL, Zimmerman, RD. Computered tomographic demonstration of cerebral edema in a child with galactosemia. Pediatrics 1986;78:606–9.Google Scholar
Sidbury, JB Jr. (1960). The role of galactose-1-phosphate in the pathogenesis of galactosemia. In Gardner, LE (Ed.), Molecular Genetics and Human Disease (p. 61). Springfield, IL: Charles C Thomas.Google Scholar
Tada, K. Glycogenesis and glycolysis in the liver from congenital galactosemia. Tohoku J Exp Med 1964;82:168–71.Google Scholar
Keppler, D, Decker, K. Studies on the mechanisms of galactosamine hepatitis: accumulation of galactosamine-1-phosphate and its inhibition of UDP-glucose pyrophosphorylase. EurJ Biochem 1969;10:219–25.Google Scholar
Quan-Ma, R, Wells, W. The distribution of galactitol in tissues of rats fed galactose. Biochem Biophys Res Commun 1965;20:486–90.Google Scholar
Schwarz, V. The value of galactose phosphate determinations in the treatment of galactosemia. Arch Dis Child 1960;35:428–32.Google Scholar
Thier, S, Fox, M, Rosenberg, L, et al. Hexose inhibition of amino acid uptake in the rat kidney cortex slice. Biochim Biophys Acta 1964;93:106–15.Google Scholar
Saunders, S, Isselbacher, KJ. Inhibition of intestinal amino acid transport by hexoses. Biochim Biophys Acta 1965;102:397409.Google Scholar
van Heyningen, R. Formation of polyols by the lens of the rat with “sugar” cataract. Nature 1959;184:194–5.Google Scholar
Kinoshita, JH, Dvornik, D, Krami, M, et al. The effect of aldose reductase inhibitor on the galactose-exposed rabbit lens. Biochim Biophys Acta 1968;158:472–5.Google Scholar
Dische, Z, Zelmenis, G, Youlous, J. Studies on protein and protein synthesis during the development of galactose cataract. Am J Ophthalmol 1957;44:332–40.Google Scholar
Kinoshita, JH, Merola, LO, Tung, B. Changes in cation permeability in the galactose-exposed rabbit lens. Exp Eye Res 1968;7:8090.Google Scholar
Granett, SE, Kozak, LP, McIntyre, JP, et al. Studies on cerebral energy metabolism during the course of galactose neurotoxicity in chicks.J Neurochem 1972;19:1659–70.Google Scholar
Malone, JI, Wells, HJ, Segal, S. Galactose toxicity in the chick: hyperosmolality. Science 1971;174:952–4.Google Scholar
Knull, HR, Wells, WW. Recovery from galactose-induced neurotoxicity in the chick by the administration of glucose. J Neurochem 1973;20:415–22.Google Scholar
Woolley, DW, Gommi, BW. Serotonin receptors, IV: specific deficiency of receptors in galactose poisoning and its possible relationship to the idiocy of galactosemia. Proc Natl Acad Sci USA 1964;52:1419.Google Scholar
Sanders, RD, Spencer, JB, Epstein, MP, et al. Biomarkers of ovarian function in girls and women with classic galactosemia. Fertil Steril 2009;92:344–51.Google Scholar
Roe, TF, Hallat, JG, Donnell, GN, et al. Childbearing by a galactosemic woman. J Pediatr 1971;78:1026–30.Google Scholar
Robbins, SL, Cotran, RS. (1979). Diseases of infancy and childhood. In Robbins, SL, Cotran, RS (Eds.), Pathologic Basis of Disease, 2nd edn. (p. 582). Philadelphia, PA: Saunders.Google Scholar
Smetana, HF, Olen, E. Hereditary galactose disease. Am J Clin Pathol 1962;38:325.Google Scholar
Xu, YK, Kaufman, FR, Donnell, GN, et al. Radiochemical assay of minute quantities of galactose-1-phosphate uridyl transferase activity in erythrocytes and leukocytes of galactosemia patients. Clin Chim Acta 1995;235:125–36.Google Scholar
Kliegman, RM, Sparks, JW. Perinatal galactose metabolism. J Pediatr 1985;107:831–41.Google Scholar
Mellman, WJ, Tedesco, TA, Feige, P. Estimation of the gene frequency of the Duarte variant of galactose-1-phosphate uridyl transferase. Ann Hum Genet 1968;32:1.Google Scholar
Brandt, NJ. Frequency of heterozygotes for hereditary galactosemia in a normal population. Acta Genet 1967;17:289.Google Scholar
Scriver, CR. Population screening: report of a workshop. Prog Clin Biol Res 1985;163B:89152.Google Scholar
Pasquali, M, Yu, C, Coffee, B. Laboratory diagnosis of galactosemia: a technical standard and guideline of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine 2018;1:311.Google Scholar
Kleijer, WJ, Janse, HC, van Diggelen, OP, et al. First-trimester diagnosis of galactosaemia. Lancet 1986;i:748.Google Scholar
Koch, R, Donnell, GN, Fishler, K, et al. Galactosemia. In Kelley, VC (ed.) Practice of Pediatrics. Hagerstown, MD: Harper & Row, 1979, p. 14.Google Scholar
Rubio-Gozalbo, ME, Haskovic, M, Bosch, AM, Burnyte, B, Coelho, AI, Cassiman, D, Couce, ML, Dawson, C. The natural history of classic galactosemia: lessons from the GalNet registry. Orphanet J Rare Dis 2019;1:86.Google Scholar
Manis, FR, Cohn, LB, McBride-Chang, C, et al. A longitudinal study of cognitive functioning in patients with classical galactosaemia, including a cohort treated with oral uridine. J Inherit Metab Dis 1997;20:549555.Google Scholar
Berry, GT. The role of polyols in the pathophysiology of hypergalactosemia. Eur J Pediatr 1995;154(Suppl. 2):S53S64.Google Scholar
Boxer, MB, Shen, M, Tanega, C, et al. Toward improved therapy for classic galactosemia. Probe Reports from the NIH Molecular Libraries Program. Bethesda, MD: National Center for Biotechnology Information, 2010 (updated March 3, 2011).Google Scholar
Renner, C, Razeghi, S, Uberall, MA, et al. Hormone replacement therapy in galactosaemic twins with ovarian failure and severe osteoporosis. J Inherit Metab Dis 1999;22:194–5.Google Scholar
Hennermann, JB, Schadewaldt, P, Vetter, B, et al. Features and outcome of galactokinase deficiency in children diagnosed by newborn screening. J Inherit Metab Dis 2011;34:399407.Google Scholar
Sangiuolo, F, Magnani, M, Stambolian, D, et al. Biochemical characterization of two GALK1 mutations in patients with galactokinase deficiency. Hum Mutat 2004;23:396.Google Scholar
Sachs, B, Sternfeld, L, Kraus, G. Essential fructosuria: its pathophysiology. Am J Dis Child 1974;63:252.Google Scholar
Steinmann, B, Gitzelmann, R, Van den Berghe, G. Disorders of fructose metabolism. In Scriver, C, Beaudet, A, Sly, W, et al. (eds.) The Metabolic and Molecular Bases of Inherited Disease, vol 1, 8th edn. New York: McGraw-Hill, 2000, pp. 14891520.Google Scholar
Chalmers, RA, Pratt, RTC. Idiosyncrasy to fructose. Lancet 1956;ii:340.Google Scholar
Froesch, ER, Prader, A, Labhart, A, et al. Hereditary fructose intolerance, a congenital metabolic disorder unknown until now.Schweiz Med Wochenschr 1957;87:1168–71.Google Scholar
Baker, L, Winegrad, AI. Fasting hypoglycemia and metabolic acidosis associated with deficiency of hepatic fructose-1,6-diphosphatase activity. Lancet 1970;ii:1316.Google Scholar
Thorens, B. Glucose transporters in the regulation of intestinal, renal, and liver glucose fluxes. Am J Physiol 1996;270:G541–53.Google Scholar
Rottmann, WH, Tolan, DR, Penhoet, EE. Complete amino acid sequence for human aldolase B derived from cDNA and genomic clones. Proc Natl Acad Sci USA 1984;81:2738–42.Google Scholar
Lench, NJ, Telford, EA, Andersen, SE, et al. An EST and STS-based YAC contig map of human chromosome 9q22.3. Genomics 1996;38:199205.Google Scholar
Chambers, RA, Pratt, RTC. Idiosyncrasy to fructose. Lancet 1956;ii:340.Google Scholar
Froesch, VER, Prader, A, Labhart, A, et al. Die hereditare Fructoseintoleranz, eine bisher nicht bekannte kongenitale Stoffwechselstorung. Schweiz Med Wochenschr 1957;87:1168–71.Google Scholar
Hers, HG, Joassin, G. Anomaly of hepatic aldolase in intolerance to fructose.] Enzymol Biol Clin 1961;1:414.Google Scholar
Penhoet, EE, Kochman, M, Rutter, WJ. Isolation of fructose diphosphate aldolases A, B and C. Biochemistry 1969;8:4391–5.Google Scholar
Henry, I, Gallano, P, Besmond, C, et al. The structural gene for aldolase B (ALDB) maps to 9q13-32. Ann Hum Genet 1985;49:173–80.Google Scholar
Tolan, DR, Penhoet, EE. Characterization of the human aldolase B gene. Mol Biol Med 1986;3:245–64.Google Scholar
Cross, NC, Tolan, DR, Cox, TM. Catalytic deficiency of human aldolase B in hereditary fructose intolerance caused by a common missense mutation. Cell 1988;53:881–5.Google Scholar
Cross, NC, de Franchis, R, Sebastio, G, et al. Molecular analysis of aldolase B genes in hereditary fructose intolerance. Lancet 1990;335:306–9.Google Scholar
Sebastio, G, de Franchis, R, Strisciuglio, P, et al. Aldolase B mutations in Italian families affected by hereditary fructose intolerance. J Med Genet 1991;28:241–3.Google Scholar
Tolan, DR, Brooks, CC. Molecular analysis of common aldolase B alleles for hereditary fructose intolerance in North Americans. Biochem Med Metab Biol 1992;48:1925.Google Scholar
Rellos, P, Sygusch, J, Cox, TM. Expression, purification, and characterization of natural mutants of human aldolase B. Role of quaternary structure in catalysis. J Biol Chem 2000;275:1145–51.Google Scholar
Coffee, EM, Tolan, DR. Mutations in the promoter region of the aldolase B gene that cause hereditary fructose intolerance. J Inherit Metab Dis 2010;33:715–25.Google Scholar
Cornblath, M, Rosenthal, IM, Reisner, SH, et al. Hereditary fructose intolerance. N Engl J Med 1963;269:1271–8.Google Scholar
Li, H, Byers, HM, Diaz-Kuan, A, Vos, MB, Hall, PL, Tortorelli, S, Singh, R, Wallenstein, MB. Acute liver failure in neonates with undiagnosed hereditary fructose intolerance due to exposure from widely available infant formulas. Mol Genet Metab 2018;123(4):428–32.Google Scholar
Odievre, M, Gentil, C, Gautier, M, et al. Hereditary fructose intolerance in childhood. Diagnosis, management, and course in 55 patients. Am J Dis Child 1978;132: 605–8.Google Scholar
Schulte, MJ, Widukind, L. Fatal sorbitol infusion in a patient with fructose-sorbitol intolerance. Lancet 1977;2:188.Google Scholar
Morris, RC, Jun, Ueki I, et al. Absence of renal fructose-1-phosphate aldolase activity in hereditary fructose intolerance. Nature 1967;214:920–1.Google Scholar
Froesch, ER, Prader, A, Wolf, HP, et al. Hereditary fructose intolerance. Helv Paediatr Acta 1959;14:99112.Google Scholar
Froesch, ER. (1978). Essential fructosuria, hereditary fructose intolerance, and fructose-1,6-diphosphatase deficiency. In Stanbury, JB, Wyngaarden, JB, Fredrickson, DS (Eds.) The Metabolic Basis of Inherited Disease, 4th edn., p. 131. New York: McGraw-Hill.Google Scholar
van Den Berg, G, Hue, L, Hers, HG. Effect of administration of fructose on glycolytic action of glucagon. An investigation of the pathogeny of hereditary fructose intolerance. Biochem J 1973;134:637.Google Scholar
Raivio, KO, Kekomaki, MP, Maenpaa, PH. Depletion of liver adenine nucleotides induced by D-fructose. Dose-dependence and specificity of the fructose effect. Biochem Pharmacol 1969;18:2615–24.Google Scholar
Levin, B, Oberholzer, VG, Snodgrass, GJ, et al. Fructosaemia. An inborn error of fructose metabolism. Arch Dis Child 1963;38:220–30.Google Scholar
Schwartz, R, Gamsu, H, Mulligan, PB, et al. Transient intolerance to exogenous fructose in the newborn. J Clin Invest 1964;43:333–40.Google Scholar
Perheentupa, J, Pitkanen, E, Nikkila, EA, et al. Hereditary fructose intolerance. A clinical study of four cases. Ann Paediatr Fenn 1962;8:221–35.Google Scholar
Nikkila, EA, Perheentupa, J. Non- esterified fatty acids and fatty liver in hereditary fructose intolerance. Lancet 1962;ii:1280.Google Scholar
Morris, RC Jr. An experimental renal acidification defect in patients with hereditary fructose intolerance. II. Its distinction from classic renal tubular acidosis; its resemblance to the renal acidification defect associated with the Fanconi syndrome of children with cystinosis. J Clin Invest 1968;47:1648–63.Google Scholar
Melancon, SB, Khachadurian, AK, Nadler, HL, et al. Metabolic and biochemical studies in fructose 1,6-diphosphatase deficiency. J Pediatr 1973;82:650–7.Google Scholar
Kikawa, Y, Shin, YS, Inuzuka, M, et al. Diagnosis of fructose-1,6-bisphosphatase deficiency using cultured lymphocyte fraction: a secure and noninvasive alternative to liver biopsy. J Inherit Metab Dis 2002;25:41–6.Google Scholar
Elpeg, ON. The molecular background of glycogen metabolism disorders. J Pediatr Endocrinol Metab 1999;12:263379.Google Scholar
Hers, HG. The control of glycogen metabolism in the liver. Ann Rev Biochem 1976;45:167–89.Google Scholar
von Gierke, E. Glykogenspeicherkrankheit der Leber und Nieren [Hepato-nephromegalia glykogenica]. Beitr Pathol Anat 1929;82:497513.Google Scholar
Cori, GT, Cori, CF. Glucose-6- phosphatase of the liver in glycogen storage disease. J Biol Chem 1952;199:661–7.Google Scholar
Cori, GT. Glycogen structure and enzyme deficiencies in glycogen storage disease. Harvey Lect 1953;48:145–71.Google Scholar
Chen, SY, Pan, CJ, Nandigama, K, et al. The glucose-6-phosphate transporter is a phosphate-linked antiporter deficient in glycogen storage disease type Ib and Ic. FASEB 2008;22:2206–13.Google Scholar
Shelly, LL, Lei, KJ, Pan, CJ, et al. Isolation of the gene for murine glucose-6- phosphatase, the enzyme deficient in glycogen storage disease type 1A. J Biol Chem 1993;268:21482–5.Google Scholar
Lei, KJ, Pan, CJ, Shelly, LL, et al. Identification of mutations in the gene for glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a. J Clin Invest 1994;93:1994–9.Google Scholar
Chou, JY and Masfield, B. Mutations in the glucose-6-phosphate (G6PC) gene that cause type 1a glycogen storage disease. Hum Mutat 2008;29:921–30.Google Scholar
Kishnani, PS, Austin, SL, Abdenur, JE, Arn, P, Bali, DS, Boney, A, Chung, WK, Dagli, AI. Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics. Genet Med 2014;16(11):e1.Google Scholar
Stroppiano, M, Regis, S, DiRocco, M, et al. Mutations in the glucose-6-phosphatase gene of 53 Italian patients with glycogen storage disease type Ia. J Inherit Metab Dis 1999;22:43–9.Google Scholar
Melis, D, Pivonello, R, Parenti, G, et al. The growth hormone-insulin-like growth factor axis in glycogen storage disease type 1: evidence of different growth patterns and insulin-like growth factor levels in patients with glycogen storage disease type 1a and 1b. J Pediatr 2010;156;663–70.Google Scholar
Hers, H, Van Hoof, F, de Barsy, T. (1989). Glycogen storage disease. In Stanbury, JB, Wyngaarden, JB, Frederickson, DS (Eds.), The Metabolic Basis of Inherited Disease, 6th edn., pp. 425–52. New York: McGraw- Hill.Google Scholar
Rake, JP, Visser, G, Labrune, P, Leonard, JV, Ullrich, K, Smit, G, Peter, A. European study on glycogen storage disease type I (ESGSD I): guidelines for management of glycogen storage disease type I. Eur J Pediatr 2002;161(Suppl. 1):112–19.Google Scholar
Ghishan, FK, Greene, HL. (1990). Inborn errors of metabolism that cause permanent injury to the liver. In Zakim, D, Boyer, T (Eds.), Hepatology: A Textbook of Liver Disease, vol. 49, 2nd edn., pp. 1300–48. Philadelphia, PA: Saunders.Google Scholar
Fernandes, J, Berger, R, Smit, GPA. Lactate as a cerebral metabolic fuel for glucose-6-phosphatase deficient children. Pediatr Res 1984;18:335–9.Google Scholar
Coire, CI, Qizilbash, AH, Castelli, MF. Hepatic adenomata in type Ia glycogen storage disease. Arch Pathol Lab Med 1987;111:166–9.Google Scholar
Slonim, AE, Lacy, WW, Terry, A, et al. Nocturnal intragastric therapy in type I glycogen storage disease: effect on hormonal and amino acid metabolism. Metabolism 1979;28:707–15.Google Scholar
Sadeghi-Nejad, A, Presente, E, Binkiewicz, A, et al. Studies in type I glycogenesis of the liver. The genesis and disposition of lactate. J Pediatr 1974;85:4954.Google Scholar
Jakovcic, S, Khachadurian, AK, Hsia, DY. The hyperlipidemia in glycogen storage disease. J Lab Clin Med 1966;68:769–79.Google Scholar
Forget, PP, Fernandes, J, Begemann, PH. Triglyceride clearing in glycogen storage disease. Pediatr Res 1974;8:114–19.Google Scholar
Fine, RN, Strauss, J, Donnell, GN. Hyperuricemia in glycogen-storage disease type 1. Am J Dis Child 1966;112:572–6.Google Scholar
Jakovcic, S, Sorensen, LB. Studies of uric acid metabolism in glycogen storage disease associated with gouty arthritis. Arthritis Rheum 1967;10:129–34.Google Scholar
Zhang, B, Zeng, X. Tophaceous gout in a female premenopausal patient with an unexpected diagnosis of glycogen storage disease type Ia: a case report and literature review. Clin Rheumatol 2016;35(11):2851–6.Google Scholar
Corby, DG, Putnam, CW, Greene, HL. Impaired platelet function in glucose-6-phosphatase deficiency. J Pediatr 1974;85:71–6.Google Scholar
Cooper, RA. Abnormalities of cell- membrane fluidity in the pathogenesis of disease. N Engl J Med 1977;297:371–7.Google Scholar
Roe, TF, Kogut, MD, Buckingham, BA, et al. Hepatic tumors in glycogen- storage disease type I. Pediatr Res 1979;13:931.Google Scholar
Bali, DS, Chen, YT, Austin, S, Goldstein, JL. Glycogen storage disease type I. In Adam, MP, Ardinger, HH, Pagon, RA, Wallace, SE, Bean, LJ, Stephens, K, Amemiya, A. GeneReviews®. Seattle, WA: University of Washington, 1993.Google Scholar
McAdams, AJ, Hug, G, Bove, KE. Glycogen storage disease, types I to X: criteria for morphologic diagnosis. Hum Pathol 1974;5:463–87.Google Scholar
Greene, HL, Slonim, AE, Burr, IM, et al. Type I glycogen storage disease: five years of management with nocturnal intragastric feeding. J Pediatr 1980;96:590–5.Google Scholar
Senior, B, Loridan, L. Studies of liver glycogenoses, with particular reference to the metabolism of intravenously administered glycerol. N Engl J Med 1968;279:958–65.Google Scholar
Arion, WJ, Wallin, BK, Lange, AJ, et al. On the involvement of a glucose6-phosphate transport system in the function of microsomal glucose6-phosphatase. Mol Cell Biochem 1975;6:7583.Google Scholar
Skaug, WA, Warford, LL, Figueroa, JM, et al. Glycogenesis type IB: possible membrane transport defect. South Med J 1981;74:761–4.Google Scholar
Zakim, D, Edmondson, DE. The role of the membrane in the regulation of activity of microsomal glucose-6- phosphatase. J Biol Chem 1982;257:1145–8.Google Scholar
Hiraiwa, H, Pan, CJ, Lin, B, et al. Inactivation of the glucose 6-phosphate transporter causes glycogen storage disease type 1b. J Biol Chem 1999;274:5532–6.Google Scholar
Annabi, B, Hiraiwa, H, Mansfield, BC, et al. The gene for glycogen-storage disease type 1b maps to chromosome 11q23. Am J Hum Genet 1998;62:400–5.Google Scholar
Chen, LY, Pan, CJ, Shieh, JJ, et al. Structure–function analysis of the glucose-6-phosphate transporter deficient in glycogen storage disease type Ib. Hum Mol Genet 2002;11:3199–207.Google Scholar
Visser, G, Rake, JP, Labrune, P, Leonard, JV, Moses, S, Ullrich, K, Wendel, U, Smit, G, Peter, A. Consensus guidelines for management of glycogen storage disease type 1b – European Study on Glycogen Storage Disease Type 1. Eur J Pediatr 2002;161(Suppl. 1):120–3.Google Scholar
Forbes, GB. Glycogen storage disease: report of a case with abnormal glycogen structure in liver and skeletal muscle. J Pediatr 1953;42:645–53.Google Scholar
Illingworth, B, Cori, GT. Structure of glycogens and amylopectins: III. Normal and abnormal human glycogen. J Biol Chem 1952;199:653–60.Google Scholar
Chen, Y-T, He, J-K, Ding, J-H, et al. Glycogen debranching enzyme: purification, antibody characterization, and immunoblot analyses of type III glycogen storage disease. Am J Hum Genet 1987;41:1002–15.Google Scholar
van Hoof, F, Hers, HG. The subgroups of type III glycogenosis. Eur J Biochem 1967;2:265–70.Google Scholar
Ding, J-H, de Barsy, T, Brown, BI, et al. Immunoblot analyses of glycogen debranching enzyme in different subtypes of glycogen storage disease type III. J Pediatr 1990;116:95100.Google Scholar
Bao, Y, Dawson, TL Jr, Chen, YT. Human glycogen debranching enzyme gene (AGL): complete structural organization and characterization of the 5´ flanking region. Genomics 1996;38:155–65.Google Scholar
Yang-Feng, TL, Zheng, K, Yu, J, et al. Assignment of the human glycogen debrancher gene to chromosome 1p21. Genomics 1992;13:931–4.Google Scholar
Yang, BZ, Ding, JH, Enghild, JJ, et al. Molecular cloning and nucleotide sequence of cDNA encoding human muscle glycogen debranching enzyme. J Biol Chem 1992;267:9294–9.Google Scholar
Bao, Y, Yang, BZ, Dawson, TL Jr., et al. Isolation and nucleotide sequence of human liver glycogen debranching enzyme mRNA: identification of multiple tissue-specific isoforms. Gene 1997;197:389–98.Google Scholar
Okubo, M, Kanda, F, Horinishi, A, et al. Glycogen storage disease type IIIa: first report of a causative missense mutation (G1448 R) of the glycogen debranching enzyme gene found in a homozygous patient. Hum Mutat 1999;14:542–3.Google Scholar
Shen, J, Bao, Y, Liu, HM, et al. Mutations in exon 3 of the glycogen debranching enzyme gene are associated with glycogen storage disease type III that is differentially expressed in liver and muscle. J Clin Invest 1996;98:352–7.Google Scholar
Shen, JJ, Chen, YT. Molecular characterization of glycogen storage disease type III. Curr Mol Med 2002;2:167–75.Google Scholar
van Creveld, S, Huijing, F. Glycogen storage disease: biochemical and clinical data in sixteen cases. Am J Med 1965;38:554–61.Google Scholar
Ugawa, Y, Inoue, K, Takemura, T, et al. Accumulation of glycogen in peripheral nerve axons in adult-onset type III glycogenosis. Ann Neurol 1986;19:294–7.Google Scholar
Alagille, D, Odievre, M. (1979). Inborn errors of metabolism. In Alagille, D, Odievre, M (Eds.), Liver and Biliary Tract Disease in Children, pp. 196242. New York: Wiley.Google Scholar
Hug, G, Krill, CE Jr, Perrin, EV, et al. Cori’s disease (amylo-1,6-glucosidase deficiency): report of a case in a Negro child. N Engl J Med 1963;268:113–20.Google Scholar
Slonim, AE, Terry, AB, Moran, R, et al. Differing food consumption for nocturnal intragastric therapy in types I and III glycogen storage disease. Pediatr Res 1978;12:512894.Google Scholar
Borowitz, SM, Greene, HL. Cornstarch therapy in a patient with type III glycogen storage disease. J Pediatr Gastroenterol Nutr 1987;6:631–4.Google Scholar
Valayannopoulos, V, Bajolle, F, Arnoux, JB, et al. Successful treatment of severe cardiomyopathy in glycogen storage disease type III with DL-3- hydroxybutyrate, ketogenic and high protein diet. Pediatr Res 2011;70:638–41.Google Scholar
Mayorandan, S, Meyer, U, Hartmann, H, Anibh, M. Glycogen storage disease type III: modified Atkins diet improves myopathy. Orphanet J Rare Dis 2014;9:196.Google Scholar
Anderson, DH. (1952). Studies on glycogen disease with report of a case in which the glycogen was abnormal. In Ajjar, VA (Ed.), Carbohydrate Metabolism, p. 28. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Illingworth, B, Cori, GT. Structure of glycogens and amylopectins. III. Normal and abnormal human glycogen. J Biol Chem 1952;199:653–60.Google Scholar
Brown, BI, Brown, DH. Lack of an alpha-1,4-glucan: alpha-1,4-glucan 6-glycosyl transferase in a case of type IV glycogenosis. Proc Natl Acad Sci USA 1966;56:725–9.Google Scholar
Andersen, DH. Familial cirrhosis of the liver with storage of abnormal glycogen. Lab Invest 1956;5:1120.Google Scholar
Thon, VJ, Khalil, M, Cannon, JF. Isolation of human glycogen branching enzyme cDNAs by screening complementation in yeast. J Biol Chem 1993;268:7509–13.Google Scholar
Bao, Y, Kishnani, P, Wu, J-Y, et al. Hepatic and neuromuscular forms of glycogen storage disease type IV caused by mutations in the same glycogen-branching enzyme gene. J Clin Invest 1996;97:941–8.Google Scholar
Li, SC, Hwu, WL, Lin, JL, et al. Association of the congenital neuromuscular form of glycogen storage disease type IV with a large deletion and recurrent frameshift mutation. J Child Neurol 2012;27:204–8.Google Scholar
Shen, J, Liu, HM, McConkie-Rosell, A, et al. Prenatal diagnosis of glycogen storage disease type IV using PCR-based DNA mutation analysis. Prenat Diagn 1999;9:837–9.Google Scholar
Magoulas, PL, El-Hattab, AW. Glycogen storage disease type IV. In Adam, MP, Ardinger, HH, Pagon, RA, Wallace, SE, Bean, LJ, Stephens, K, Amemiya, A, GeneReviews®. Seattle, WA: University of Washington, 1993.Google Scholar
Schochet, SS, McCormick, WF, Zellweger, H. Type IV glycogenosis (amylopectinosis): light and electron microscopic observations. Arch Pathol 1970;90:354–63.Google Scholar
Ferguson, IT, Mahon, M, Cumming, WJK. An adult case of Andersen’s disease: type IV glycogenosis. J Neurol Sci 1983;60:337–51.Google Scholar
Das, BB, et al. Amylopectinosis disease isolated to the heart with normal glycogen branching enzyme activity and gene sequence. Pediatr Transplant 2005:9:261–5.Google Scholar
Bruno, C, Servidei, S, Shanske, G, et al. Glycogen branching enzyme deficiency in adult polyglucosan body disease. Ann Neurol 1993;33:8893.Google Scholar
Witters, P, Morava, E. (2016). Congenital Disorders of Glycosylation: Review. Chichester: John Wiley & Sons, Ltd. doi: 10.1002/9780470015902.a0026783Google Scholar
Marques-da-Silva, D, Dos Reis Ferreira, V, Monticelli, M, Janeiro, P, Videira, PA, Witters, P, Jaeken, J, Cassiman, D. Liver involvement in congenital disorders of glycosylation. A systematic review of the literature. J Inherit Metab Dis 2017;40(2):195207. doi: 10.1007/s10545-016-0012-4.Google Scholar
Altassan, R, Péanne, R, Jaeken, J, Barone, R, Bidet, M, et al. International clinical guidelines for the management of phosphomannomutase 2-congenital disorders of glycosylation: diagnosis, treatment and follow-up. J Inherit Metab Dis 2019;42(1):528.Google Scholar
Witters, P, Honzik, T, Bauchart, E, Altassan, R, Pascreau, T, Bruneel, A, Vuillaumier, S, Seta, N, Borgel, D, Matthijs, G, Jaeken, J, Meersseman, W, Cassiman, D, Pascale de, L, Morava, E. Long-term follow-up in PMM2-CDG: are we ready to start treatment trials? Genet Med 2019;21(5):1181–8. doi:10.1038/s41436-018-0301-4Google Scholar
Verheijen, J, Tahata, S, Kozicz, T, Witters, P, Morava, E. Therapeutic approaches in congenital disorders of glycosylation involving N-linked glycosylation: an update. Genet Med 2019. doi: 10.1038/s41436-019-0647-2Google Scholar
Radenkovic, S, Bird, MJ, Emmerzaal, TL, Wong, SY, Felgueira, C, et al. The metabolic map into the pathomechanism and treatment of PGM1-CDG. Am J Hum Genet 2019;104(5):835–46. doi: 10.1016/j.ajhg.2019.03.003Google Scholar
Tegtmeyer, LC, Rust, S, van Scherpenzeel, M, Ng, BG, Losfeld, ME, et al. T. Multiple phenotypes in phosphoglucomutase 1 deficiency. N Engl J Med 2014;370(6):533–42.Google Scholar
Baker, P, Ayres, L, Gaughan, S, Weisfeld-Adams, J. Hereditary fructose intolerance. In Adam, MP, Ardinger, HH, Pagon, RA, Wallace, SE, Bean, LJ, Stephens, K, Amemiya, A. GeneReviews®. Seattle, WA: University of Washington, 1993.Google Scholar

References

Czlonkowska, A, Litwin, T, Dusek, P, et al. Wilson disease. Nat Rev Disease Primers 2018;4:21.Google Scholar
Gollan, JL. Studies on the nature of complexes formed by copper with human alimentary secretions and their influence on copper absorption in the rat. Clin Sci Mol Med 1975;49:237.Google Scholar
Klomp, LW, Liu, SJ, Yuan, DS, et al. Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem 1997;272:9221–6.Google Scholar
Harrison, MD, Jones, CE, Dameron, CT. Copper chaperones: function, structure and copper-binding properties. J Biol Inorg Chem 1999;4:145–53.Google Scholar
Portnoy, ME, Rosenzweig, AC, Roe, T, et al. Structure-function analyses of the ATX1 metallochaperone. J Biol Chem 1999;274:15041–5.Google Scholar
Sternlieb, I, Morell, AG, Tucker, WD, et al. The incorporation of copper into ceruloplasmin in vivo: studies with copper 64 and copper 67. J Clin Invest 1961;40:1834.Google Scholar
Miyajima, H. Aceruloplasminemia: an iron metabolic disorder. Neuropathology 2003;23:345–50.Google Scholar
Frieden, E, Hsieh, HS. The biological role of ceruloplasmin and its oxidase activity. Adv Exp Med Biol 1976;74:505.Google Scholar
Scheinberg, IH, Cook, CD, Murphy, JA. The concentration of copper and ceruloplasmin in maternal and infant plasma at delivery. J Clin Invest 1954;33:963.Google Scholar
Schilsky, ML, Sternlieb, I. Overcoming obstacles to the diagnosis of Wilson’s disease. Gastroenterology 1997;113:350–3.Google Scholar
Rosencrantz, R, Schilsky, M. Wilson disease: pathogenesis and clinical considerations in diagnosis and treatment. Sem Liver Disease 2011;31:245–59.Google Scholar
Frommer, DJ. Defective biliary excretion of copper in Wilson’s disease. Gut 1974;15:125.Google Scholar
Mueller, T, Van de Sluis, B, Zhernakova, A, et al. The canine copper toxicosis gene MURR1 does not cause non-Wilsonian hepatic copper toxicosis. J Hepatol 2003;38:164–8.Google Scholar
Tao, TY, Liu, F, Klomp, L, et al. The copper toxicosis gene product Murr1 directly interacts with the Wilson disease protein. J Biol Chem 2003;278:41593–6.Google Scholar
Stuehler, B, Reichert, J, Stemmel, W, Schaefer, M. .Analysis of the human homologue of the canine copper toxicosis gene MURR1 in Wilson disease patients. J Mol Med 2004;82:629–6.Google Scholar
Evans, GW. Copper homeostasis in the mammalian system. Physiol Rev 1973;53:535.Google Scholar
Reed, GB, Butt, EM, Landing, BH. Copper in childhood liver disease. A histologic, histochemical and chemical survey. Arch Pathol 1972;93:249.Google Scholar
Sokol, RJ, Twedt, D, McKim, JM Jr, et al. Oxidant injury to hepatic mitochondria in patients with Wilson’s disease and Bedlington terriers with copper toxicosis. Gastroenterology 1994;107:1788–98.Google Scholar
Valko, M, Morris, H, Cronin, MT. Metals, toxicity and oxidative stress. Curr Med Chem 2005;12(10):1161–208.Google Scholar
Mufti, AR, Burstein, E, Csomos, RA, et al. XIAP is a copper binding protein deregulated in Wilson’s disease and other copper toxicosis disorders. Mol Cell 2006;21(6):775–85.CrossRefGoogle ScholarPubMed
Sokol, RJ. Abnormal hepatic mitochondrial respiration and cytochrome C oxidase activity in rats with copper overload. Gastroenterology 1993;105:178–87.CrossRefGoogle ScholarPubMed
Mansouri, A, Gaou, I, Fromenty, B, et al. Premature oxidative aging of hepatic mitochondrial DNA in Wilson’s disease. Gastroenterology 1997;113:599605.Google Scholar
Wilson, AK. Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver. Brain 1912;34:295.CrossRefGoogle Scholar
Bull, PC, Thomas, GR, Rommens, JM, et al. The Wilson’s disease gene is a putative copper transporting P-type ATPase similar to the Menkes’ gene. Nat Genet 1993;5:327–37.Google Scholar
Wilson, DC, Phillips, MJ, Cox, DW, Roberts, EA. Severe hepatic Wilson’s disease in preschool-aged children. J Pediatr 2000;137:719–22.Google Scholar
Walshe, JM. (1982). The liver in Wilson’s disease (hepatolenticular degeneration). In: Schiff, L, Schiff, ER, (Eds.), Diseases of the Liver (pp. 1037–50). Philadelphia: JB Lippincott.Google Scholar
Scheinberg, IH, Sternlieb, I, (Eds.). (1984). Wilson’s disease. Philadelphia: WB Saunders.Google Scholar
Schilsky, ML, Scheinberg, IH, Sternlieb, I. Prognosis of Wilsonian chronic active hepatitis. Gastroenterology 1991;100:762–7.Google Scholar
Walshe, JM, Waldenstrom, E, Sams, V, Nordlinder, H, Westermark, K. Abdominal malignancies in patients with Wilson’s disease. QJM 2003;96:657–62.Google Scholar
Factor, SM, Cho, S, Sternlieb, I, et al. The cardiomyopathy of Wilson’s disease. Myocardial alterations in nine cases. Virchows Arch [A] 1982;397:301–11.Google Scholar
Korman, JD, Volenberg, I, Balko, J, Webster, J, Schiodt, FV, Squires, RH Jr, Fontana, RJ, Lee, WM, Schilsky, ML. Pediatric and Adult Acute Liver Failure Study Groups. Screening for Wilson disease in acute liver failure: a comparison of currently available diagnostic tests. Hepatology 2008;48:1168–74.Google Scholar
Ferenci, P, Caca, K, Loudianos, G, Mieli-Vergani, G, Tanner, S, Sternlieb, I, Schilsky, M, Cox, D, Berr, F. Diagnosis and phenotypic classification of Wilson disease. Liver Int 2003;23:139–42.Google Scholar
DaCosta, CM, Baldwin, D, Portmann, B, et al. Value of urinary copper excretion after penicillamine challenge in the diagnosis of Wilson’s disease. Hepatology 1992;15:609–15.Google Scholar
Steindl, P, Ferenci, P, Dienes, HP, et al. Wilson’s disease in patients presenting with liver disease: a diagnostic challenge. Gastroenterology 1997;113:212–18.Google Scholar
Sternlieb, I. Mitochondrial and fatty changes in hepatocytes of patients with Wilson’s disease. Gastroenterology 1968;55:354.Google Scholar
Williams, FJB, Walshe, JM. Wilson’s disease. An analysis of the cranial computerized tomographic appearances found in 60 patients and the changes in response to treatment with chelating agents. Brain 1981;104:735–52.Google Scholar
Linne, T, Agartz, I, Saaf, J, et al. Cerebral abnormalities in Wilson disease as evaluated by ultra-low-field magnetic resonance imaging and computerized image processing. Magn Reson Imaging 1990;8:819–24.Google Scholar
Brewer, GJ, Askari, F, Lorincz, MT, Carlson, M, Schilsky, M, Kluin, KJ, Hedera, P, Moretti, P, Fink, JK, Tankanow, R, Dick, RB, Sitterly, J. Treatment of Wilson disease with ammonium tetrathiomolybdate: IV. Comparison of tetrathiomolybdate and trientine in a double-blind study of treatment of the neurologic presentation of Wilson disease. Arch Neurol 2006;63(4):521–7.Google Scholar
Walshe, JM. Penicillamine, a new oral therapy for Wilson’s disease. Am J Med 1956;21:487–95.Google Scholar
Brewer, GJ, Terry, CA, Aisen, AM, Hill, GM. Worsening of neurologic syndrome in patients with Wilson’s disease with initial penicillamine therapy. Arch Neurol 1987;44:490–3.Google Scholar
Weiss, KH, Czlonkowska, A, Hedera, P, Ferenci, P. WTX1010 – an investigational drug for the treatment of Wilson Disease. Expert Opin Invest Drugs 2018;27:561–7.Google Scholar
Socha, P, Janczyk, W, Dhawan, A, et al. Wilson’s Disease in Children: A Position Paper by the Hepatology Committee of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2018;66(2):334–44.Google Scholar
Santiago, R, Gottrand, F, Debray, D, Bridoux, L, Lachaux, A, Morali, A, Lapeyre, D, Lamireau, T. Zinc therapy for Wilson disease in children in French pediatric centers. J Pediatr Gastroenterol Nutr 2015;61(6):613–18.Google Scholar
Weiss, KH, Gotthardt, DN, Klemm, D, Merle, U, Ferenci-Foerster, D, Schaefer, M, Ferenci, P, Stremmel, W. Zinc monotherapy is not as effective as chelating agents in treatment of Wilson disease. Gastroenterology 2011;140(4):1189–98.Google Scholar
Garoufalia, Z, Prodromidou, A, Machairas, N, Kostakis, ID, Stamopoulos, P, Zavras, N, Fouzas, sI, Sotiropoulos, GC. Liver transplantation for Wilson’s disease in non-adult patients: a systematic review. Transplant Proc 2019;51(2):443–5.Google Scholar
Nazer, H, Ede, RJ, Mowat, AP, et al. Wilson’s disease: clinical presentation and use of prognostic index. Gut 1986;27:1377–81.Google Scholar
Dhawan, A, Taylor, RM, Cheeseman, P, De Silva, P, et al. Wilson’s disease in children: 37-year experience and revised King’s score for liver transplantation. Liver Transplantation 2005;11:441–8.Google Scholar
Sternlieb, I. Wilson’s disease and pregnancy. Hepatology 2000;31:531–2.Google Scholar
Tanner, MS. Role of copper in Indian childhood cirrhosis. Am J Clin Nutr 1998;67(suppl):1074–81.Google Scholar
Müller, T, Feichtinger, H, Berger, H, et al. Endemic Tyrolean infantile cirrhosis: an ecogenetic disorder. Lancet 1996;347:877–80.Google Scholar
O’Neill, NC, Tanner, MS. Uptake of copper from brass vessels by bovine milk and its relevance to Indian childhood cirrhosis. J Pediatr Gastroenterol Nutr 1989;9:167–72.Google Scholar
Nayak, NC, Chitale, AR. Indian Childhood cirrhosis (ICC) & ICC-like diseases: the changing scenario of facts versus notions. Indian J Med Res 2013;137:1029–42.Google ScholarPubMed
Bhave, SA, Pandit, AN, Pradhan, AM, et al. Liver disease in India. Arch Dis Child 1982;57:922.Google Scholar
Tanner, MS, Bhave, SA, Pradham, AM, et al. Clinical trials of penicillamine in Indian childhood cirrhosis. Arch Dis Child 1987;62:1118–24.Google Scholar
Horslen, SP, Tanner, MS, Lyon, TDB, et al. Copper associated childhood cirrhosis. Gut 1994;35:1497–500.Google Scholar
Scheinberg, IH, Sternlieb, I. Is non-Indian childhood cirrhosis caused by excess dietary copper. Lancet 1994;344:1002–4.Google Scholar
Saito, T. Presenting symptoms and natural history of Wilson’s disease. Eur J Pediatr 1987;146:261–5.Google Scholar
Giagheddu, A, Demelisa, L, Puggioni, G, Nurchi, AM, Contu, L, Pirari, G, Deplano, A, Rachele, MG. Epidemiologic study of hepatolenticular degeneration (Wilson’s disease) in Sardinia (1902–1983). Acta Neurol Scand 1985;72:4355.Google Scholar
Dobyns, WB, Goldstein, NP, Gordon, H. Clinical spectrum of Wilson’s disease (hepatolenticular degeneration). Mayo Clin Proc 1979;54:3542.Google Scholar
Stremmel, W, Meyerrose, KW, Niederau, C, et al. Wilson’s disease: clinical presentation, treatment and survival. Ann Intern Med 1991;115:720–6.Google Scholar
Aksoy, M, Erdem, S. Wilson’s disease in Turkey, a review of 49 cases in 41 families. New Istanbul Contrib Clin Sci 1975;11:92–7.Google Scholar
Oder, W, Grimm, G, Kollegger, H, et al. Neurological and neuropsychiatric spectrum of Wilson’s disease: a prospective study of 45 cases. J Neurol 1991;238:281–7.CrossRefGoogle ScholarPubMed
Park, RHR, McCabe, P, Fell, GS, et al. Wilson’s disease in Scotland. Gut 1991;32:1541–5.CrossRefGoogle ScholarPubMed
Martinelli, D, Dionisi-Vici, C. AP1S1 defect causing MEDNIK syndrome: a new adaptinopathy associated with defective copper metabolism. Ann N Y Acad Sci 2014;1314:5563.Google Scholar
Martinelli, D, Travaglini, L, Drouin, CA, et al. MEDNIK syndrome: a novel defect of copper metabolism treatable by zinc acetate therapy. Brain 2013;136(Pt 3):872–81.Google Scholar
Ranucci, G, Iorio, R. (2019). Disorders that mimic Wilson disease. In: Kerkar, N, Roberts, EA (Eds.). Clinical and translational perspectives on Wilson disease (pp. 419–25). London: Academic Press, Elsevier.Google Scholar
Shneider, BL. ABCB4 disease presenting with cirrhosis and copper overload- potential confusion with Wilson disease. J Clin Exp Hepatol 2011;1:115227.Google Scholar

Websites of Interest

GeneReviews – Wilson Disease: www.ncbi.nlm.nih.gov/books/NBK1512/ [last accessed June 21, 2020].

Wilson Disease Association: www.wilsonsdisease.org/ [last accessed June 21, 2020].

National Organization for Rare Disorders: https://rarediseases.org/rare-diseases/wilson-disease/ [last accessed June 21, 2020].

Genetics and Rare Disease Information Center: https://rarediseases.info.nih.gov/diseases/7893/disease [last accessed June 21, 2020].

References

Pietrangelo, A, Caleffi, A, Corradini, E. Non-HFE hepatic iron overload. Semin Liver Dis 2011;31:302–18.Google Scholar
Bacon, BR, Adams, PC, Kowdley, DV, et al. Diagnosis and Management of Hemochromatosis: 2011 Practice Guideline by the AASLD. Hepatology 2011;54(1):328–43.Google Scholar
Evstatiev, R, Gasche, C. Iron sensing and signalling. Gut 2012;61:933–52.Google Scholar
Vaulont, S, Lou, DQ, Viatte, L, Kahn, A. Of mice and men: the iron age. J Clin Invest 2005;115:2079–82.Google Scholar
De Domenico, I, Ward, DM, Kaplan, J. Hepcidin and ferroportin: the new players in iron metabolism. Semin Liver Dis 2011;31:272–9.Google Scholar
Pietrangelo, A. Hepcidin in human iron disorders: therapeutic implications. J Hepatol 2011;54:173–81.Google Scholar
Huang, FW, Pinkus, JL, Pinkus, GS, Fleming, MD, Andrews, NC. A mouse model of juvenile hemochromatosis. J Clin Invest 2005;115:2187–91.Google Scholar
Feder, JN, Gnirke, A, Thomas, W, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 1996;13:399408.Google Scholar
Pietrangelo, A. Genetics, genetic testing, and management of hemochromatosis: 15 years since hepcidin. Gastroenterology 2015;149:1240–51.Google Scholar
Phatak, PD, Sham, RL, Raubertas, RF, et al. Prevalence of hereditary hemochromatosis in 16031 primary care patients. Ann Intern Med 1998;129:954–61.Google Scholar
Olynyk, JK, Cullen, DJ, Aquilia, S, et al. A population-based study of the clinical expression of the hemochromatosis gene. N Engl J Med 1999;341:718–24.Google Scholar
Edwards, CQ, Griffen, LM, Goldgar, D, et al. Prevalence of hemochromatosis among 11,065 presumably healthy blood donors. N Engl J Med 1988;318:1355–62.Google Scholar
Ramrakhiani, S, Bacon, R. Hemochromatosis: advances in molecular genetics and clinical diagnosis. J Clin Gastroenterol 1998;27:41–6.Google Scholar
Sandu, K, Flintoff, K, Chatfield, MD, et al. Phenotypic analysis of hemochromatosis subtypes reveals variations in severity of iron overload and clinical disease. Blood 2018;132(1):101–10.Google Scholar
Kong, X, Xie, L, Zhu, H. Genotypic and phenotypic spectra of hemojuvelin mutations in primary hemochromatosis patients: a systematic review. Orphanet J Rare Dis 2019;14:224.Google Scholar
Adams, PC, Kertesz, AE, Valberg, LS. Screening for hemochromatosis in children of homozygotes: prevalence and cost-effectiveness. Hepatology 1995;22:1720–7.Google Scholar
Grove, J, Daly, AK, Burt, AD, et al. Heterozygotes for HFE mutations have no increased risk of advanced alcoholic liver disease. Gut 1998;43:262–6.Google Scholar
Bonkovsky, HL, Jawaid, Q, Tortorelli, K, et al. Non-alcoholic steatohepatitis and iron: increased prevalence of mutations of the HFE gene in non-alcoholic steatohepatitis. J Hepatol 1999;31:421–9.Google Scholar
Kowdley, KV, Trainer, TD, Saltzman, JR, et al. Utility of hepatic iron index in American patients with hereditary hemochromatosis: a multicenter study. Gastroenterology 1997;113:1270–7.Google Scholar
Martin, DR, Semelka, RC. Magnetic resonance imaging of the liver: review of techniques and approach to common diseases. Semin Ultrasound CT MR 2005;26:116–31.Google Scholar
Adams, PC. Implications of genotyping of spouses to limit investigation of children in genetic hemochromatosis. Clin Genet 1998;53:176–8.Google Scholar
Guyader, D, Jacquelinet, C, Moirand, R, et al. Noninvasive prediction of fibrosis in C282Y homozygous hemochromatosis. Gastroenterology 1998;115:929–36.Google Scholar
Whitlock, EP, Garlitz, BA, Harris, EL, Beil, TL, Smith, PR. Screening for hereditary hemochromatosis: a systematic review for the US Preventive Services Task Force. Ann Intern Med 2006;145:209–23.Google Scholar
Niederau, C, Erhardt, A, Haussinger, D, et al. Haemochromatosis and the liver. J Hepatol 1999;30(Suppl 1):611.Google Scholar
EASL. Clinical practice guidelines for HFE hemochromatosis. J Hepatol 2010;53:322.Google Scholar
Gehrke, SG, Pietrangelo, A, Kascak, M, et al. HJV gene mutations in European patients with juvenile hemochromatosis. Clin Genet 2005;67:425–8.Google Scholar
Wolfe, L, Olivieri, N, Sallan, D, et al. Prevention of cardiac disease by subcutaneous deferoxamine in patients with thalassemia major. N Engl J Med 1985;312:1600–3.Google Scholar
Nielsen, P, Fischer, R, Engelhardt, R et al. Liver iron stores in patients with secondary haemosiderosis under iron chelation therapy with deferoxamine or deferiprone. Br J Haematol 1995;91:827–33.Google Scholar
Hernando, D, Levin, YS, Sirlin, CB, Reeder, SB. Quantification of liver iron with MRI: state of the art and remaining challenges. J Magn Reson Imaging 2014;40:1003–21.Google Scholar
Brittenham, GM, Griffith, PM, Nienhuis, AW, et al. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N Engl J Med 1994;331:567–73.Google Scholar
Cabibbo, S, Fidone, C, Garozzo, G, et al. Chronic red blood cell exchange to prevent clinical complications in sickle cell disease. Transfus Apher Sci 2005;32:315–21.Google Scholar
Shah, NR. Advances in iron chelation therapy: transitioning to a new oral formulation. Drugs Context 2017;6:212502.Google Scholar
Cappellini, MD, Musallam, KM, Taher, AT. Overview of iron chelation therapy with desferrioxamine and deferiprone. Hemoglobin 2009;33(Suppl1):S58S69.Google Scholar
Knisely, AS, Mieli-Vergani, G, Whitington, PF. Neonatal hemochromatosis. Gastroenterol Clin North Am 2003;32:877–89, vivii.Google Scholar
Kelly, AL, Lunt, PW, Rodrigues, F, et al. Classification and genetic features of neonatal haemochromatosis: a study of 27 affected pedigrees and molecular analysis of genes implicated in iron metabolism. J Med Genet 2001;38:599610.Google Scholar
Taylor, SA, Kelly, S, Alonso, EM, Whitington, PF. The effects of gestational alloimmune liver disease on fetal and infant morbidity and mortality. J Pediatr 2018;196:123–8.CrossRefGoogle ScholarPubMed
Whitington, PF. Gestational alloimmune liver disease and neonatal hemochromatosis. Semin Liver Dis 2012;32:325–32.Google Scholar
Pan, X, Kelly, S, Melin-Aldana, H, Malladi, P, Whitington, PF. Novel mechanism of fetal hepatocyte injury in congenital alloimmune hepatitis involves the terminal complement cascade. Hepatology 2010;51:2061–8.Google Scholar
Hoftman, AC, Hernandez, MI, Lee, KW, Stiehm, ER. Newborn illnesses caused by transplacental antibodies. Adv Pediatr 2008;55:271304.Google Scholar
Bonilla, S, Prozialeck, JD, Malladi, P, et al. Neonatal iron overload and tissue siderosis due to gestational alloimmune liver disease. J Hepatol 2012;56:1351–5.Google Scholar
Bonilla, SF, Melin-Aldana, H, Whitington, PF. Relationship of proximal renal tubular dysgenesis and fetal liver injury in neonatal hemochromatosis. Pediatr Res 2010;67:188–93.Google Scholar
Whitington, PF, Pan, X, Kelly, S, Melin-Aldana, H, Malladi, P. Gestational alloimmune liver disease in cases of fetal death. J Pediatr 2011;159:612–16.Google Scholar
Silver, MM, Beverley, DW, Valberg, LS, et al. Perinatal hemochromatosis. Clinical, morphologic, and quantitative iron studies. Am J Pathol 1987;128: 538–54.Google Scholar
Ekong, UD, Kelly, S, Whitington, PF. Disparate clinical presentation of neonatal hemochromatosis in twins. Pediatrics 2005;116:e880e884.Google Scholar
Taylor, SA, Whitington, PF. Neonatal acute liver failure. Liver Transpl 2016;22:677–85.Google Scholar
Knisely, AS, O’Shea, PA, Stocks, JF, Dimmick, JE. Oropharyngeal and upper respiratory tract mucosal-gland siderosis in neonatal hemochromatosis: an approach to biopsy diagnosis. J Pediatr 1988;113:871–4.Google Scholar
Udell, IW, Barshes, NR, Voloyiannis, T, et al. Neonatal hemochromatosis: radiographical and histological signs. Liver Transplant 2005;11:9981000.Google Scholar
Leonis, MA, Balistreri, WF. Neonatal hemochromatosis: it’s OK to say “NO” to antioxidant-chelator therapy. Liver Transplant 2005;11:1323–5.Google Scholar
Rand, EB, Karpen, SJ, Kelly, S, et al. Treatment of neonatal hemochromatosis with exchange transfusion and intravenous immunoglobulin. J Pediatr 2009;155:566–71.Google Scholar
Ekong, UD, Melin-Aldana, H, Whitington, PF. Regression of severe fibrotic liver disease in 2 children with neonatal hemochromatosis. J Pediatr Gastroenterol Nutr 2008;46:329–33.Google Scholar
Grabhorn, E, Richter, A, Burdelski, M, Rogiers, X, Ganschow, R. Neonatal hemochromatosis: long-term experience with favorable outcome. Pediatrics 2006;118:2060–5.Google Scholar
Rodrigues, F, Kallas, M, Nash, R, et al. Neonatal hemochromatosis: medical treatment vs. transplantation: the King’s experience. Liver Transplant 2005;11:1417–24.Google Scholar
Sundaram, SS, Alonso, EM, Whitington, PF. Liver transplantation in neonates. Liver Transplant 2003;9:783–8.Google Scholar
Sheflin-Findling, S, Annunziato, RA, Chu, J, et al. Liver transplantation for neonatal hemochromatosis: analysis of the UNOS database. Pediatr Transplantation 2015;19:164–9.Google Scholar
Whitington, PF, Kelly, S, Taylor, SA, et al. Antenatal treatment with intravenous immunoglobulin to prevent gestational alloimmune liver disease: comparative effectiveness of 14-week versus 18-week initiation. Fetal Diagn Ther 2018;43:218–25.Google Scholar

References

Anderson, KE SS, Bishop, DF, Desnick, RJ. (2014). Disorders of heme biosynthesis: X-linked sideroblastic anemia and the porphyrias. In Valle, D, Beaud, AL, Vogelstein, B, Kinzler, KW, Antonarakis, SE, Ballabio, A, Gibson, K, Mitchell, G (Eds.). New York, NY: McGraw-Hill. http://ommbid.mhmedical.com/content.aspx?bookid=971&Sectionid=62638866 [last accessed June 23, 2020].Google Scholar
Anderson, KE, Bloomer, JR, Bonkovsky, HL, et al. Recommendations for the diagnosis and treatment of the acute porphyrias. Ann Intern Med 2005;142:439–50.Google Scholar
Bissell, DM, Anderson, KE, Bonkovsky, HL. Porphyria. N Engl J Med 2017;377:2101.Google Scholar
Puy, H, Gouya, L, Deybach, JC. Porphyrias. Lancet 2010;375:924–37.Google Scholar
Elder, GH. Hepatic porphyrias in children. J Inherit Metab Dis 1997;20:237–46.Google Scholar
Yasuda, M, Chen, B, Desnick, RJ. Recent advances on porphyria genetics: inheritance, penetrance and molecular heterogeneity, including new modifying/causative genes. Mol Genet Metab 2019;128(3):320–31.Google Scholar
Soonawalla, ZF, Orug, T, Badminton, MN, et al. Liver transplantation as a cure for acute intermittent porphyria. Lancet 2004;363:705–6.Google Scholar
Yasuda, M, Erwin, AL, Liu, LU, et al. Liver transplantation for acute intermittent porphyria: biochemical and pathologic studies of the explanted liver. Mol Med 2015;21:487–95.Google Scholar
Wahlin, S, Harper, P, Sardh, E, et al. Combined liver and kidney transplantation in acute intermittent porphyria. Transpl Int 2010;23:e1821.Google Scholar
Erwin, AL, Desnick, RJ. Congenital erythropoietic porphyria: recent advances. Mol Genet Metab 2019;128(3):288–97.Google Scholar
Desnick, RJ, Astrin, KH. Congenital erythropoietic porphyria: advances in pathogenesis and treatment. Br J Haematol 2002;117:779–95.Google ScholarPubMed
Phillips, JD. Heme biosynthesis and the porphyrias. Mol Genet Metab 2019; 128(3):164–77.Google Scholar
Balwani, M, Doheny, D, Bishop, DF, et al. Loss-of-function ferrochelatase and gain-of-function erythroid-specific 5-aminolevulinate synthase mutations causing erythropoietic protoporphyria and x-linked protoporphyria in North American patients reveal novel mutations and a high prevalence of X-linked protoporphyria. Mol Med 2013;19:2635.Google Scholar
Whatley, SD, Ducamp, S, Gouya, L, et al. C-terminal deletions in the ALAS2 gene lead to gain of function and cause X-linked dominant protoporphyria without anemia or iron overload. Am J Hum Genet 2008;83:408–14.Google Scholar
May, BK, Dogra, SC, Sadlon, TJ, et al. Molecular regulation of heme biosynthesis in higher vertebrates. Prog Nucleic Acid Res Mol Biol 1995;51:151.Google Scholar
Bonkovsky, HL, Maddukuri, VC, Yazici, C, et al. Acute porphyrias in the USA: features of 108 subjects from porphyrias consortium. Am J Med 2014;127:1233–41.Google Scholar
Chen, B, Whatley, S, Badminton, M, et al. International Porphyria Molecular Diagnostic Collaborative: an evidence-based database of verified pathogenic and benign variants for the porphyrias. Genet Med 2019;21(11):2605–13.Google Scholar
Grandchamp, B, Picat, C, de Rooij, F, et al. A point mutation G–-A in exon 12 of the porphobilinogen deaminase gene results in exon skipping and is responsible for acute intermittent porphyria. Nucleic Acids Res 1989;17:6637–49.Google Scholar
Mustajoki, P, Desnick, RJ. Genetic heterogeneity in acute intermittent porphyria: characterisation and frequency of porphobilinogen deaminase mutations in Finland. Br Med J (Clin Res Ed) 1985;291:505–9.Google Scholar
Balwani, M, Naik, H, Anderson, KE, et al. Clinical, biochemical, and genetic characterization of North American patients with erythropoietic protoporphyria and X-linked protoporphyria. JAMA Dermatol 2017;153:789–96.Google Scholar
Balwani, M, Wang, B, Anderson, KE, et al. Acute hepatic porphyrias: recommendations for evaluation and long-term management. Hepatology 2017;66:1314–22.Google Scholar
Akagi, R, Kato, N, Inoue, R, et al. delta-Aminolevulinate dehydratase (ALAD) porphyria: the first case in North America with two novel ALAD mutations. Mol Genet Metab 2006;87:329–36.Google Scholar
Stenson, PD, Ball, EV, Mort, M, et al. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 2003;21:577–81.Google Scholar
Plewinska, M, Thunell, S, Holmberg, L, et al. delta-Aminolevulinate dehydratase deficient porphyria: identification of the molecular lesions in a severely affected homozygote. Am J Hum Genet 1991;49:167–74.Google Scholar
Astrin, KH, Bishop, DF, Wetmur, JG, et al. delta-Aminolevulinic acid dehydratase isozymes and lead toxicity. Ann N Y Acad Sci 1987;514:23–9.Google Scholar
Chen, B, Solis-Villa, C, Hakenberg, J, et al. Acute intermittent porphyria: predicted pathogenicity of HMBS variants indicates extremely low penetrance of the autosomal dominant disease. Hum Mutat 2016;37:1215–22.Google Scholar
Lenglet, H, Schmitt, C, Grange, T, et al. From a dominant to an oligogenic model of inheritance with environmental modifiers in acute intermittent porphyria. Hum Mol Genet 2018;27:1164–73.Google Scholar
Handschin, C, Lin, J, Rhee, J, et al. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha. Cell 2005;122:505–15.Google Scholar
Pallet, N, Mami, I, Schmitt, C, et al. High prevalence of and potential mechanisms for chronic kidney disease in patients with acute intermittent porphyria. Kidney Int 2015;88:386–95.Google Scholar
Tchernitchko, D, Tavernier, Q, Lamoril, J, et al. A variant of peptide transporter 2 predicts the severity of porphyria-associated kidney disease. J Am Soc Nephrol 2017;28:1924–32.Google Scholar
Dowman, JK, Gunson, BK, Mirza, DF, et al. Liver transplantation for acute intermittent porphyria is complicated by a high rate of hepatic artery thrombosis. Liver Transpl 2012;18:195200.Google Scholar
Yasuda, M, Bishop, DF, Fowkes, M, et al. AAV8-mediated gene therapy prevents induced biochemical attacks of acute intermittent porphyria and improves neuromotor function. Mol Ther 2010;18:1722.Google Scholar
D’Avola, D, Lopez-Franco, E, Sangro, B, et al. Phase I open label liver-directed gene therapy clinical trial for acute intermittent porphyria. J Hepatol 2016;65:776–83.Google Scholar
Sardh, E, Harper, P, Balwani, M, et al. Phase 1 trial of an RNA interference therapy for acute intermittent porphyria. N Engl J Med 2019;380:549–58.Google Scholar
Llewellyn, DH, Smyth, SJ, Elder, GH, et al. Homozygous acute intermittent porphyria: compound heterozygosity for adjacent base transitions in the same codon of the porphobilinogen deaminase gene. Hum Genet 1992;89:97–8.Google Scholar
Solis, C, Martinez-Bermejo, A, Naidich, TP, et al. Acute intermittent porphyria: studies of the severe homozygous dominant disease provides insights into the neurologic attacks in acute porphyrias. Arch Neurol 2004;61:1764–70.Google Scholar
Yasuda, M, Gan, L, Chen, B, et al. Homozygous hydroxymethylbilane synthase knock-in mice provide pathogenic insights into the severe neurological impairments present in human homozygous dominant acute intermittent porphyria. Hum Mol Genet 2019;28:1755–67.Google Scholar
Phillips, JD, Bergonia, HA, Reilly, CA, et al. A porphomethene inhibitor of uroporphyrinogen decarboxylase causes porphyria cutanea tarda. Proc Natl Acad Sci U S A 2007;104:5079–84.Google Scholar
Egger, NG, Goeger, DE, Payne, DA, et al. Porphyria cutanea tarda: multiplicity of risk factors including HFE mutations, hepatitis C, and inherited uroporphyrinogen decarboxylase deficiency. Dig Dis Sci 2002;47:419–26.Google Scholar
Kuhnel, A, Gross, U, Doss, MO. Hereditary coproporphyria in Germany: clinical-biochemical studies in 53 patients. Clin Biochem 2000;33:465–73.Google Scholar
Martasek, P. Hereditary coproporphyria. Semin Liver Dis 1998;18:2532.Google Scholar
Martasek, P, Nordmann, Y, Grandchamp, B. Homozygous hereditary coproporphyria caused by an arginine to tryptophane substitution in coproporphyrinogen oxidase and common intragenic polymorphisms. Hum Mol Genet 1994;3:477–80.Google Scholar
Lee, DS, Flachsova, E, Bodnarova, M, et al. Structural basis of hereditary coproporphyria. Proc Natl Acad Sci U S A 2005;102:14232–7.Google Scholar
Schmitt, C, Gouya, L, Malonova, E, et al. Mutations in human CPO gene predict clinical expression of either hepatic hereditary coproporphyria or erythropoietic harderoporphyria. Hum Mol Genet 2005;14:3089–98.Google Scholar
Hasanoglu, A, Balwani, M, Kasapkara, CS, et al. Harderoporphyria due to homozygosity for coproporphyrinogen oxidase missense mutation H327 R. J Inherit Metab Dis 2011;34:225–31.Google Scholar
Meissner, P, Hift, R, Corrigall, A. (2003). Variegate porphyria. In Kadish, K, Smith, K, Guilard, R (Eds.). Porphyrin Handbook, Part II (p. 93). San Diego, CA: Academic Press.Google Scholar
Poh-Fitzpatrick, MB. A plasma porphyrin fluorescence marker for variegate porphyria. Arch Dermatol 1980;116:543–7.Google Scholar
Meissner, PN, Dailey, TA, Hift, RJ, et al. A R59 W mutation in human protoporphyrinogen oxidase results in decreased enzyme activity and is prevalent in South Africans with variegate porphyria. Nat Genet 1996;13:95–7.Google Scholar
Solis, C, Aizencang, GI, Astrin, KH, et al. Uroporphyrinogen III synthase erythroid promoter mutations in adjacent GATA1 and CP2 elements cause congenital erythropoietic porphyria. J Clin Invest 2001;107:753–62.Google Scholar
Phillips, JD, Steensma, DP, Pulsipher, MA, et al. Congenital erythropoietic porphyria due to a mutation in GATA1: the first trans-acting mutation causative for a human porphyria. Blood 2007;109:2618–21.Google Scholar
Piomelli, S, Poh-Fitzpatrick, MB, Seaman, C, et al. Complete suppression of the symptoms of congenital erythropoietic porphyria by long-term treatment with high-level transfusions. N Engl J Med 1986;314:1029–31.Google Scholar
Dupuis-Girod, S, Akkari, V, Ged, C, et al. Successful match-unrelated donor bone marrow transplantation for congenital erythropoietic porphyria (Gunther disease). Eur J Pediatr 2005;164:104–7.Google Scholar
Gouya, L, Martin-Schmitt, C, Robreau, AM, et al. Contribution of a common single-nucleotide polymorphism to the genetic predisposition for erythropoietic protoporphyria. Am J Hum Genet 2006;78:214.Google Scholar
Wahlin, S, Floderus, Y, Stal, P, et al. Erythropoietic protoporphyria in Sweden: demographic, clinical, biochemical and genetic characteristics. J Intern Med 2011;269:278–88.Google Scholar
Whatley, SD, Mason, NG, Holme, SA, et al. Molecular epidemiology of erythropoietic protoporphyria in the U.K. Br J Dermatol 2010;162:642–6.Google Scholar
Meerman, L, Koopen, NR, Bloks, V, et al. Biliary fibrosis associated with altered bile composition in a mouse model of erythropoietic protoporphyria. Gastroenterology 1999;117:696705.Google Scholar
Minder, EI, Gouya, L, Schneider-Yin, X, et al. A genotype-phenotype correlation between null-allele mutations in the ferrochelatase gene and liver complication in patients with erythropoietic protoporphyria. Cell Mol Biol (Noisy-le-grand) 2002;48:91–6.Google Scholar
Harms, J, Lautenschlager, S, Minder, CE, et al. An alpha-melanocyte-stimulating hormone analogue in erythropoietic protoporphyria. N Engl J Med 2009;360:306–7.CrossRefGoogle ScholarPubMed
Langendonk, JG, Balwani, M, Anderson, KE, et al. Afamelanotide for erythropoietic protoporphyria. N Engl J Med 2015;373:4859.Google Scholar
McGuire, BM, Bonkovsky, HL, Carithers, RL Jr., et al. Liver transplantation for erythropoietic protoporphyria liver disease. Liver Transpl 2005;11:1590–6.Google Scholar
Fontanellas, A, Mazurier, F, Landry, M, et al. Reversion of hepatobiliary alterations by bone marrow transplantation in a murine model of erythropoietic protoporphyria. Hepatology 2000;32:7381.CrossRefGoogle Scholar
Akagi, R, Inoue, R, Muranaka, S, et al. Dual gene defects involving delta-aminolaevulinate dehydratase and coproporphyrinogen oxidase in a porphyria patient. Br J Haematol 2006;132:237–43.Google Scholar
Harraway, JR, Florkowski, CM, Sies, C, et al. Dual porphyria with mutations in both the UROD and HMBS genes. Ann Clin Biochem 2006;43:80–2.Google Scholar
Yasuda, M, Desnick, RJ. Murine models of the human porphyrias: contributions toward understanding disease pathogenesis and the development of new therapies. Mol Genet Metab 2019;128(3):332–41.Google Scholar
Lindberg, RL, Porcher, C, Grandchamp, B, et al. Porphobilinogen deaminase deficiency in mice causes a neuropathy resembling that of human hepatic porphyria. Nat Genet 1996;12:195–9.Google Scholar
Bishop, DF, Johansson, A, Phelps, R, et al. Uroporphyrinogen III synthase knock-in mice have the human congenital erythropoietic porphyria phenotype, including the characteristic light-induced cutaneous lesions. Am J Hum Genet 2006;78:645–58.Google Scholar
Bishop, DF, Clavero, S, Mohandas, N, et al. Congenital erythropoietic porphyria: characterization of murine models of the severe common (C73 R/C73 R) and later-onset genotypes. Mol Med 2011;17:748–56.Google Scholar
Tutois, S, Montagutelli, X, Da Silva, V, et al. Erythropoietic protoporphyria in the house mouse. A recessive inherited ferrochelatase deficiency with anemia, photosensitivity, and liver disease. J Clin Invest 1991;88:1730–6.Google Scholar
Lindberg, RL, Martini, R, Baumgartner, M, et al. Motor neuropathy in porphobilinogen deaminase-deficient mice imitates the peripheral neuropathy of human acute porphyria. J Clin Invest 1999;103:1127–34.Google Scholar
Phillips, JD, Jackson, LK, Bunting, M, et al. A mouse model of familial porphyria cutanea tarda. Proc Natl Acad Sci U S A 2001;98:259–64.Google Scholar
Medlock, AE, Meissner, PN, Davidson, BP, et al. A mouse model for South African (R59 W) variegate porphyria: construction and initial characterization. Cell Mol Biol (Noisy-le-grand) 2002;48:71–8.Google Scholar
Gou, E, Balwani, M, Bissell, DM, Bloomer, JR, Bonkovsky, HL, Desnick, RJ, Naik, H, Phillips, J, Singal, AK, Wang, B, Keel, S, and Anderson, KE. Pitfalls in erythrocyte protoporphyrin measurement for diagnosis and monitoring of protoporphyrias. Clinical Chemistry 2015:61(12):1453–6.Google Scholar

References

Mitchell, GA, Grompe, M, Lambert, M, Tanguay, RM. (2014). Hypertyrosinemia. In: Beaudet, AL, Vogelstein, B, Kinzler, KW, et al., (Eds.), The Online Metabolic and Molecular Bases of Inherited Disease. New York: The McGraw-Hill Companies, Inc.Google Scholar
Lock, EA. From weed killer to wonder drug. Adv Exp Med Biol 2017;959:175–85.Google Scholar
Morrow, G, Tanguay RM:Biochemical and Clinical Aspects of Hereditary Tyrosinemia Type 1. Adv Exp Med Biol.2017; 959:9–21.Google Scholar
Lindblad, B, Lindstedt, S, Steen, G. On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci U S A 1977;74(10):4641–5.Google Scholar
Kvittingen, EA, Jellum, E, Stokke, O. Assay of fumarylacetoacetate fumarylhydrolase in human liver-deficient activity in a case of hereditary tyrosinemia. Clin Chim Acta 1981;115(3):311–19.Google Scholar
Russo, P, O’Regan, S. Visceral pathology of hereditary tyrosinemia type I. Am J Hum Genet 1990;47(2):317–24.Google Scholar
Jorquera, R, Tanguay, RM. The mutagenicity of the tyrosine metabolite, fumarylacetoacetate, is enhanced by glutathione depletion. Biochem Biophys Res Commun 1997;232(1):42–8.Google Scholar
Kvittingen, EA, Rootwelt, H, Brandtzaeg, P, Bergan, A, Berger, R. Hereditary tyrosinemia type I. Self-induced correction of the fumarylacetoacetase defect. J Clin Invest 1993;91(4):1816–21.Google Scholar
Mitchell, G, Larochelle, J, Lambert, M, Michaud, J, Grenier, A, Ogier, H, et al. Neurologic crises in hereditary tyrosinemia. N Engl J Med 1990;322(7):432–7.Google Scholar
Elgilani, F, Mao, SA, Glorioso, JM, Yin, M, Iankov, ID, Singh, A, et al. Chronic phenotype characterization of a large-animal model of hereditary tyrosinemia type 1. Am J Pathol 2017;187(1):3341.Google Scholar
Li, L, Zhang, Q, Yang, H, Zou, Q, Lai, C, Jiang, F, et al. Fumarylacetoacetate hydrolase knock-out rabbit model for hereditary tyrosinemia type 1. J Biol Chem 2017;292(11):4755–63.Google Scholar
Grompe, M, Al-Dhalimy, M, Finegold, M, Ou, CN, Burlingame, T, Kennaway, NG, et al. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev 1993;7(12A):2298–307.Google Scholar
Al-Dhalimy, M, Overturf, K, Finegold, M, Grompe, M. Long-term therapy with NTBC and tyrosine-restricted diet in a murine model of hereditary tyrosinemia type I. Mol Genet Metab 2002;75(1):3845.Google Scholar
Yin, H, Song, CQ, Dorkin, JR, Zhu, LJ, Li, Y, Wu, Q, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 2016;34(3):328–33.Google Scholar
De Braekeleer, M, Larochelle, J. Genetic epidemiology of hereditary tyrosinemia in Quebec and in Saguenay-Lac-St-Jean. Am J Hum Genet 1990;47(2):302–7.Google Scholar
Kvittingen, EA. Hereditary tyrosinemia type I–an overview. Scand J Clin Lab Invest Suppl 1986;184:2734.Google Scholar
Morrow, G, Angileri, F, Tanguay, RM. Molecular aspects of the FAH mutations involved in HT1 disease. Adv Exp Med Biol 2017;959:2548.Google Scholar
Ploos van Amstel, JK, Bergman, AJ, van Beurden, EA, Roijers, JF, Peelen, T, van den Berg, IE, et al. Hereditary tyrosinemia type 1: novel missense, nonsense and splice consensus mutations in the human fumarylacetoacetate hydrolase gene; variability of the genotype-phenotype relationship. Hum Genet 1996;97(1):51–9.Google Scholar
Mitchell, GA, Yang, H. Remaining challenges in the treatment of tyrosinemia from the clinician’s viewpoint. Adv Exp Med Biol 2017;959:205–13.Google Scholar
Cassiman, D, Zeevaert, R, Holme, E, Kvittingen, EA, Jaeken, J. A novel mutation causing mild, atypical fumarylacetoacetase deficiency (tyrosinemia type I): a case report. Orphanet J Rare Dis 2009;4:28.Google Scholar
Yang, H, Al-Hertani, W, Cyr, D, Laframboise, R, Parizeault, G, Wang, SP, et al. Hypersuccinylacetonaemia and normal liver function in maleylacetoacetate isomerase deficiency. J Med Genet 2017;54(4):241–7.Google Scholar
Yang, H, Rossignol, F, Cyr, D, Laframboise, R, Wang, SP, Soucy, JF, et al. Mildly elevated succinylacetone and normal liver function in compound heterozygotes with pathogenic and pseudodeficient FAH alleles. Mol Genet Metab Rep 2018;14:55–8.Google Scholar
Jakobs, C, Dorland, L, Wikkerink, B, Kok, RM, de Jong, AP, Wadman, SK. Stable isotope dilution analysis of succinylacetone using electron capture negative ion mass fragmentography: an accurate approach to the pre- and neonatal diagnosis of hereditary tyrosinemia type I. Clin Chim Acta 1988;171(2–3):223–31.Google Scholar
Blackburn, PR, Hickey, RD, Nace, RA, Giama, NH, Kraft, DL, Bordner, AJ, et al. Silent tyrosinemia type I without elevated tyrosine or succinylacetone associated with liver cirrhosis and hepatocellular carcinoma. Hum Mutat 2016;37(10):1097–105.Google Scholar
Kvittingen, EA, Brodtkorb, E. The pre- and post-natal diagnosis of tyrosinemia type I and the detection of the carrier state by assay of fumarylacetoacetase. Scand J Clin Lab Invest Suppl 1986;184:3540.Google ScholarPubMed
Georgouli, H, Schulpis, KH, Michelakaki, H, Kaltsa, M, Sdogou, T, Kossiva, L. Persistent coagulopathy during Escherichia coli sepsis in a previously healthy infant revealed undiagnosed tyrosinaemia type 1. BMJ Case Rep 2010;2010: bcr0720103150.CrossRefGoogle Scholar
Castilloux, J, Laberge, AM, Martin, SR, Lallier, M, Marchand, V. “Silent” tyrosinemia presenting as hepatocellular carcinoma in a 10-year-old girl. J Pediatr Gastroenterol Nutr 2007;44(3):375–7.Google Scholar
Shanmugam, NP, Bansal, S, Greenough, A, Verma, A, Dhawan, A. Neonatal liver failure: aetiologies and management–state of the art. Eur J Pediatr 2011;170(5):573–81.Google Scholar
Rice, DN, Houston, IB, Lyon, IC, Macarthur, BA, Mullins, PR, Veale, AM, et al. Transient neonatal tyrosinaemia. J Inherit Metab Dis 1989;12(1):1322.Google Scholar
Milan, AM, Hughes, AT, Davison, AS, Devine, J, Usher, J, Curtis, S, et al. The effect of nitisinone on homogentisic acid and tyrosine: a two-year survey of patients attending the National Alkaptonuria Centre, Liverpool. Ann Clin Biochem 2017;54(3):323–30.Google Scholar
Larochelle, J, Prive, L, Belanger, M, Belanger, L, Tremblay, M, Claveau, JC, et al. Hereditary tyrosinemia. I. Clinical and biological study of 62 cases. Pediatrie 1973;28(1):518.Google Scholar
Paradis, K, Weber, A, Seidman, EG, Larochelle, J, Garel, L, Lenaerts, C, et al. Liver transplantation for hereditary tyrosinemia: the Quebec experience. Am J Hum Genet 1990;47(2):338–42.Google Scholar
Mieles, LA, Esquivel, CO, Van Thiel, DH, Koneru, B, Makowka, L, Tzakis, AG, et al. Liver transplantation for tyrosinemia. A review of 10 cases from the University of Pittsburgh. Dig Dis Sci 1990;35(1):153–7.Google Scholar
Weinberg, AG, Mize, CE, Worthen, HG. The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J Pediatr 1976;88(3):434–8.Google Scholar
Seda Neto, J, Leite, KM, Porta, A, Fonseca, EA, Feier, FH, Pugliese, R, et al. HCC prevalence and histopathological findings in liver explants of patients with hereditary tyrosinemia type 1. Pediatr Blood Cancer 2014;61(9):1584–9.Google Scholar
Nobili, V, Jenkner, A, Francalanci, P, Castellano, A, Holme, E, Callea, F, et al. Tyrosinemia type 1: metastatic hepatoblastoma with a favorable outcome. Pediatrics 2010;126(1):e235–8.Google Scholar
Suchy, FJ, Sokol, RJ, Balistreri, WF. (2014). Liver Disease in Children, 4th edn. Cambridge: Cambridge University Press.Google Scholar
Baber, MD. A case of congenital cirrhosis of the liver with renal tubular defects akin to those in the Fanconi syndrome. Arch Dis Child 1956;31(159):335–9.Google Scholar
Tuchman, M, Freese, DK, Sharp, HL, Ramnaraine, ML, Ascher, N, Bloomer, JR. Contribution of extrahepatic tissues to biochemical abnormalities in hereditary tyrosinemia type I: study of three patients after liver transplantation. J Pediatr 1987;110(3):399403.Google Scholar
Edwards, MA, Green, A, Colli, A, Rylance, G. Tyrosinaemia type I and hypertrophic obstructive cardiomyopathy. Lancet 1987;1(8547):1437–8.Google Scholar
Dubois, J, Garel, L, Patriquin, H, Paradis, K, Forget, S, Filiatrault, D, et al. Imaging features of type 1 hereditary tyrosinemia: a review of 30 patients. Pediatr Radiol 1996;26(12):845–51.Google Scholar
Shteyer, E, Simanovsky, N, Koplewitz, B, Korman, SH. Multiple hepatic lesions in a girl with tyrosinemia: not always hepatocellular carcinoma. J Pediatr 2011;158(3):513–e1.Google Scholar
Crone, J, Moslinger, D, Bodamer, OA, Schima, W, Huber, WD, Holme, E, et al. Reversibility of cirrhotic regenerative liver nodules upon NTBC treatment in a child with tyrosinaemia type I. Acta Paediatr 2003;92(5):625–8.Google Scholar
Parikh, T, Drew, SJ, Lee, VS, Wong, S, Hecht, EM, Babb, JS, et al. Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 2008;246(3):812–22.Google Scholar
Yu, JS, Walker-Smith, JA, Burnard, ED. Neonatal hepatitis in premature infants simulating hereditary tyrosinosis. Arch Dis Child 1971;46(247):306–9.Google Scholar
Dehner, LP, Snover, DC, Sharp, HL, Ascher, N, Nakhleh, R, Day, DL. Hereditary tyrosinemia type I (chronic form): pathologic findings in the liver. Hum Pathol 1989;20(2):149–58.Google Scholar
Tremblay, M, Belanger, L, Larochelle, J, Prive, L, Gagnon, PM. Hereditary tyrosinemia: examination of the liver by electron microscopy of hepatic biopsies: observation of 7 cases. Union Med Can 1977;106(7):1014–16.Google Scholar
Jevtic, MM, Thorp, FK, Hruban, Z. Hereditary tyrosinemia with hyperplasia and hypertrophy of juxtaglomerular apparatus. Am J Clin Pathol 1974;61(3):423–37.Google Scholar
Kvittingen, EA, Talseth, T, Halvorsen, S, Jakobs, C, Hovig, T, Flatmark, A. Renal failure in adult patients with hereditary tyrosinaemia type I. J Inherit Metab Dis 1991;14(1):5362.Google Scholar
Lindberg, T, Nilsson, KO, Jeppsson, JO. Hereditary tyrosinaemia and diabetes mellitus. Acta Paediatr Scand 1979;68(4):619–20.Google Scholar
Scott, CR. The genetic tyrosinemias. Am J Med Genet C Semin Med Genet 2006;142C(2):121–6.Google Scholar
de Laet, C, Dionisi-Vici, C, Leonard, JV, McKiernan, P, Mitchell, G, Monti, L, et al. Recommendations for the management of tyrosinaemia type 1. Orphanet J Rare Dis 2013;8:8.Google Scholar
Chinsky, JM, Singh, R, Ficicioglu, C, van Karnebeek, CDM, Grompe, M, Mitchell, G, et al. Diagnosis and treatment of tyrosinemia type I: a US and Canadian consensus group review and recommendations. Genet Med 2017;19(12). doi: 10.1038/gim.2017.101Google Scholar
Quebec, NSG, Alvarez, F, Atkinson, S, Bouchard, M, Brunel-Guitton, C, Buhas, D, et al. The Quebec NTBC Study. Adv Exp Med Biol 2017;959:187–95.Google Scholar
Donlon, J, Sarkissian, C, Levy, H, Scriver, CR. (2014). Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In Beaud, AL, Vogelstein, B, Kinzler, KW, et al., (Eds.). The Online Metabolic and Molecular Bases of Inherited Disease. New York: The McGraw-Hill Companies, Inc.Google Scholar
Larochelle, J, Alvarez, F, Bussieres, JF, Chevalier, I, Dallaire, L, Dubois, J, et al. Effect of nitisinone (NTBC) treatment on the clinical course of hepatorenal tyrosinemia in Quebec. Mol Genet Metab 2012;107(1–2):4954.CrossRefGoogle ScholarPubMed
Lock, EA, Gaskin, P, Ellis, MK, Provan, WM, Robinson, M, Smith, LL, et al. Tissue distribution of 2-(2-nitro-4-trifluoromethylbenzoyl)cyclohexane-1–3-dione (NTBC): effect on enzymes involved in tyrosine catabolism and relevance to ocular toxicity in the rat. Toxicol Appl Pharmacol 1996;141(2):439–47.CrossRefGoogle Scholar
Ahmad, S, Teckman, JH, Lueder, GT. Corneal opacities associated with NTBC treatment. Am J Ophthalmol 2002;134(2):266–8.Google Scholar
van Ginkel, WG, Jahja, R, Huijbregts, SCJ, van Spronsen, FJ. Neurological and neuropsychological problems in tyrosinemia type I patients. Adv Exp Med Biol 2017;959:111–22.CrossRefGoogle ScholarPubMed
Hillgartner, MA, Coker, SB, Koenig, AE, Moore, ME, Barnby, E, MacGregor, GG. Tyrosinemia type I and not treatment with NTBC causes slower learning and altered behavior in mice. J Inherit Metab Dis 2016;39(5):673–82.Google Scholar
Arnon, R, Annunziato, R, Miloh, T, Wasserstein, M, Sogawa, H, Wilson, M, et al. Liver transplantation for hereditary tyrosinemia type I: analysis of the UNOS database. Pediatr Transplant 2011;15(4):400–5.Google Scholar
Rank, JM, Pascual-Leone, A, Payne, W, Glock, M, Freese, D, Sharp, H, et al. Hematin therapy for the neurologic crisis of tyrosinemia. J Pediatr 1991;118(1):136–9.Google Scholar
Jehan, P, Buchman, M, Odievre, M. Dietary management of hereditary tyrosinemia. Apropos of 7 cases. Ann Pediatr 1984;31(1):3340.Google Scholar
Calne, RY, Sells, RA, Pena, JR, Davis, DR, Millard, PR, Herbertson, BM, et al. Induction of immunological tolerance by porcine liver allografts. Nature 1969;223(5205):472–6.Google Scholar
Herzog, D, Martin, S, Turpin, S, Alvarez, F. Normal glomerular filtration rate in long-term follow-up of children after orthotopic liver transplantation. Transplantation 2006;81(5):672–7.Google Scholar
Pierik, LJ, van Spronsen, FJ, Bijleveld, CM, van Dael, CM. Renal function in tyrosinaemia type I after liver transplantation: a long-term follow-up. J Inherit Metab Dis 2005;28(6):871–6.Google Scholar
McKiernan, P. Liver transplantation for hereditary tyrosinaemia type 1 in the United Kingdom. Adv Exp Med Biol 2017;959:8591.Google Scholar

References

Muenzer, J, Fisher, A. Advances in the treatment of mucopolysaccharidosis type I. N Engl J Med 2004;350:1932–4.Google Scholar
Poorthuis, BJ, Wevers, RA, Kleijer, WJ, et al. The frequency of lysosomal storage diseases in the Netherlands. Hum Genet 1999;105(1–2):151–6.Google Scholar
Grabowski, GA, Petsko, GA, Kolodny, EH. Gaucher disease. In Valle, D, Beaudet, AL, Vogelstein, B, et al. (Eds.), The Online Metabolic & Molecular Bases of Inherited Disease. Available at: www.ommbid.com [last accessed June 24, 2020].Google Scholar
James, SP, Stromeyer, FW, Chang, C, Barranger, JA. Liver abnormalities in patients with Gaucher’s disease. Gastroenterology 1981;80:126–33.Google Scholar
Barbier, C, Devisme, L, Dobbelaere, D, et al. Neonatal cholestasis and infantile Gaucher disease: a case report. Acta Paediatr 2002;91:1399–401.Google Scholar
Weinreb, NJ, Charrow, J, Andersson, HC, et al. Effectiveness of enzyme replacement therapy in 1028 patients with type 1 Gaucher disease after 2 to 5 years of treatment: a report from the Gaucher Registry. Am J Med 2002;113:112–19.Google Scholar
Lukina, E, Watman, N, Arreguin, EA, et al. Improvement in hematological, visceral, and skeletal manifestations of Gaucher disease type 1 with oral eliglustat tartrate (Genz-112638) treatment: 2-year results of a phase 2 study. Blood 2010;116:4095–8.Google Scholar
Mistry, PK, Lukina, E, Ben Turkia, H, et al. Effect of oral eliglustat on splenomegaly in patients with Gaucher disease type 1: the ENGAGE randomized clinical trial. JAMA 2015;313(7):695706. doi:10.1001/jama.2015.459Google Scholar
Meikle, PJ, Hopwood, JJ, Clague, AE, Carey, WF. Prevalence of lysosomal storage disorders. JAMA 1999;281:249–54.Google Scholar
Schuchman, EH, Desnick, RJ. Niemann–Pick disease types A and B: acid sphingomyelinase deficiencies. In Valle, D, Beaudet, AL, Vogelstein, B, et al. (Eds.), The Online Metabolic & Molecular Bases of Inherited Disease. Available at: www.ommbid.com [last accessed June 24, 2020].Google Scholar
Wasserstein, MP, Desnick, RJ, Schuchman, EH, et al. The natural history of type B Niemann–Pick disease: results from a 10-year longitudinal study. Pediatrics 2004;114: e672e677.Google Scholar
Takahashi, T, Akiyama, K, Tomihara, M, et al. Heterogeneity of liver disorder in type B Niemann–Pick disease. Hum Pathol 1997;28:385–8.CrossRefGoogle ScholarPubMed
Thurberg, BL, Wasserstein, MP, Schiano, T, O’Brien, F, Richards, S, Cox, GF, McGovern, MM. Liver and skin histopathology in adults with acid sphingomyelinase deficiency (Niemann-Pick disease type B). Am J Surg Pathol 2012;36(8):1234–46.Google Scholar
Thurberg, BL, Wasserstein, MP, Jones, S, Schiano, T, Cox, GF, Puga, AC. Clearance of hepatic sphingomyelin by olipudase alfa is associated with improvement in lipid profiles in acid sphingomyelinase deficiency. Am J Surg Pathol 2016;40(9):1232–42.Google Scholar
Wasserstein, MP, Jones, SA, Soran, H, Diaz, G, Lippa, N, Thurberg, BL, Culm-Merdek, K, Shamiyeh, E, Inguilizian, H, Cox, GF, Puga, AC. Successful within-patient dose escalation of olipudase alfa in acid sphingomyelinase deficiency. Mol Genet Metab 2015;116(1–2):8897.Google Scholar
McGovern, MM, Wasserstein, MP, Kirmse, B, Duvall, WL, Schiano, T, Thurberg, BL, Richards, S, Cox, GF. Novel first-dose adverse drug reactions during a Phase 1 trial of recombinant human acid sphingomyelinase (rhASM) in adults with Niemann-Pick disease type B (acid sphingomyelinase deficiency). Genet Med 2016;18(1):3440.Google Scholar
Victor, S, Coulter, JB, Besley, GT, et al. Niemann–Pick disease: sixteen-year follow-up of allogeneic bone marrow transplantation in a type B variant. J Inherit Metab Dis 2003;26:775–85.CrossRefGoogle Scholar
Levade, T, Sandhoff, K, Schulze, H, Medin, JA. Acid ceramidase deficiency: Farber lipogranulomatosis. In Valle, D, Beaudet, AL, Vogelstein, B, et al. (Eds.), The Online Metabolic & Molecular Bases of Inherited Disease. Available at: www.ommbid.com [last accessed June 24, 2020].Google Scholar
Kattner, E, Schafer, A, Harzer, K. Hydrops fetalis: manifestation in lysosomal storage diseases including Farber disease. Eur J Pediatr 1997;156:292–5.Google Scholar
Yeager, AM, Uhas, KA, Coles, CD, et al. Bone marrow transplantation for infantile ceramidase deficiency (Farber disease). Bone Marrow Transplant 2000;26:357–63.Google Scholar
Vormoor, J, Ehlert, K, Groll, AH, et al. Successful hematopoietic stem cell transplantation in Farber disease. J Pediatr 2004;144:132–4.Google Scholar
Suzuki, Y, Nanba, E, Matsuda, J, Higaki, K, Oshima, A. B-Galactosidase deficiency (B-galactosidosis): GM1 gangliosidosis and morquio B disease. In Valle, D, Beaudet, AL, Vogelstein, B, et al. (Eds.), The Online Metabolic & Molecular Bases of Inherited Disease. Available at: www.ommbid.com [last accessed June 24, 2020].Google Scholar
Vanier, MT, Millat, G. Niemann–Pick disease type C. Clin Genet 2003;64:269–81.CrossRefGoogle ScholarPubMed
Vanier, MT. Niemann–Pick disease type C. Orphanet J Rare Dis 2010;5:16.Google Scholar
Patterson, MC, Vanier, MT, Suzuki, K, et al. Niemann–Pick disease type C: a lipid trafficking disorder. In Valle, D, Beaudet, AL, Vogelstein, B, et al. (Eds.), The Online Metabolic & Molecular Bases of Inherited Disease. Available at: www.ommbid.com [last accessed June 24, 2020].Google Scholar
Patterson, M. (1993). Niemann–Pick disease type C. In Pagon, RA, Bird, TD, Dolan, CR, Stephens, K (Eds.), GeneReviews. Seattle, WA: University of Washington.Google Scholar
Kelly, DA, Portmann, B, Mowat, AP, Sherlock, S, Lake, BD. Niemann–Pick disease type C: diagnosis and outcome in children, with particular reference to liver disease. J Pediatr 1993;123:242–7.Google Scholar
Gilbert, EF, Callahan, J, Viseskul, C, Opitz, JM. Niemann–Pick disease type C. Pathological, histochemical, ultrastructural and biochemical studies. Eur J Pediatr 1981;136:263–74.Google Scholar
Yerushalmi, B, Sokol, RJ, Narkewicz, MR, et al. Niemann–Pick disease type C in neonatal cholestasis at a North American Center. J Pediatr Gastroenterol Nutr 2002;35:4450.Google Scholar
Zervas, M, Somers, KL, Thrall, MA, Walkley, SU. Critical role for glycosphingolipids in Niemann–Pick disease type C. Curr Biol 2001;11:1283–7.Google Scholar
Wraith, JE, Vecchio, D, Jacklin, E, et al. Miglustat in adult and juvenile patients with Niemann–Pick disease type C: long-term data from a clinical trial. Mol Genet Metab 2010;99:351–7.Google Scholar
Ashe, KM, Bangari, D, Li, L, et al. Iminosugar-based inhibitors of glucosylceramide synthase increase brain glycosphingolipids and survival in a mouse model of Sandhoff disease. PLOS One 2011;6:e21758.Google Scholar
Thomas, GH. Disorders of glycoprotein degradation: α-mannosidosis, B- mannosidosis, fucosidosis, and sialidosis. In Valle, D, Beaudet, AL, Vogelstein, B, et al. (Eds.), The Online Metabolic & Molecular Bases of Inherited Disease. Available at: www.ommbid.com [last accessed June 24, 2020].Google Scholar
Willems, PJ, Gatti, R, Darby, JK, et al. Fucosidosis revisited: a review of 77 patients. Am J Med Genet 1991;38:111–31.Google Scholar
Freitag, F, Blumcke, S, Spranger, J. Hepatic ultrastructure in mucolipidosis I (lipomucopolysaccharidosis). Virchows Arch B Cell Pathol 1971;7:189204.Google Scholar
Vellodi, A, Cragg, H, Winchester, B, et al. Allogeneic bone marrow transplantation for fucosidosis. Bone Marrow Transplant 1995;15:153–8.Google Scholar
Monus, Z, Konyar, E, Szabo, L. Histomorphologic and histochemical investigations in mannosidosis. A light and electron microscopic study. Virchows Arch B Cell Pathol 1977;26:159–73.Google Scholar
d’Azzo, A, Andria, G, Strisciuglio, P, Galjaard, H. Galactosialidosis. In Valle, D, Beaudet, AL, Vogelstein, B, et al. (Eds.), The Online Metabolic & Molecular Bases of Inherited Disease. Available at: www.ommbid.com [last accessed June 24, 2020].Google Scholar
van der Spoel, A, Bonten, E, d’Azzo, A. Transport of human lysosomal neuraminidase to mature lysosomes requires protective protein/cathepsin A. EMBO J 1998;17:1588–97.Google Scholar
Hirschhorn, R, Reuser, AJJ. Glycogen storage disease type II: acid α- glucosidase (acid maltase) deficiency. In Valle, D, Beaudet, AL, Vogelstein, B, et al. (Eds.), The Online Metabolic & Molecular Bases of Inherited Disease. Available at: www.ommbid.com [last accessed June 24, 2020].Google Scholar
van den Hout, HM, Hop, W, van Diggelen, OP, et al. The natural course of infantile Pompe’s disease: 20 original cases compared with 133 cases from the literature. Pediatrics 2003;112:332–40.Google Scholar
Leslie, N, Tinkle, B. (1993). Glycogen storage disease type II (Pompe disease). In Pagon, RA, Bird, TD, Dolan, CR, Stephens, K (Eds.), GeneReviews. Seattle, WA: University of Washington.Google Scholar
Kishnani, PS, Howell, RR. Pompe disease in infants and children. J Pediatr 2004;144(5 Suppl.):S3543.Google Scholar
Hagemans, ML, Winkel, LP, Van Doorn, PA, et al. Clinical manifestation and natural course of late-onset Pompe’s disease in 54 Dutch patients. Brain 2005;128(Pt 3):671–7.Google Scholar
Kishnani, PS, Corzo, D, Leslie, ND, et al. Early treatment with alglucosidase alpha prolongs long-term survival of infants with Pompe disease. Pediatr Res 2009;66:329–35.Google Scholar
Assmann, G, Seedorf, U. Acid lipase deficiency: Wolman disease and cholesteryl ester storage disease. In Valle, D, Beaudet, AL, Vogelstein, B, et al. (Eds.), The Online Metabolic & Molecular Bases of Inherited Disease. Available at: www.ommbid.com [last accessed June 24, 2020].Google Scholar
Muntoni, S, Wiebusch, H, Jansen-Rust, M, et al. Prevalence of cholesteryl ester storage disease. Arterioscler Thromb Vasc Biol 2007;27:1866–8.Google Scholar
Grabowski, G, Bove, K, Du, H. (2004). Lysosomal acid lipase deficiencies: Wolman disease and cholesteryl ester storage disease. In Walker, WA, Goulet, OJ, Kleinman, RE (Eds.), Pediatric Gastrointestinal Disease: Pathophysiology, Diagnosis and Management (pp. 1429–39). Hamilton, ON: Decker.Google Scholar
Krivit, W, Freese, D, Chan, KW, Kulkarni, R. Wolman’s disease: a review of treatment with bone marrow transplantation and considerations for the future. Bone Marrow Transplant 1992;10(Suppl. 1):97101.Google Scholar
Valle, D, Beaudet, AL, Vogelstein, B, et al. (Eds.). In Valle, D, Beaudet, AL, Vogelstein, B, et al. (Eds.), The Online Metabolic & Molecular Bases of Inherited Disease. Available at: www.ommbid.com [last accessed June 24, 2020].Google Scholar
Parfrey, NA, Hutchins, GM. Hepatic fibrosis in the mucopolysaccharidoses. Am J Med 1986;81:825–9.Google Scholar
Kornfeld, S, Sly, WS. I-cell disease and pseudo-Hurler polydystrophy: disorders of lysosomal enzyme phosphorylation and localization. In Valle, D, Beaudet, AL, Vogelstein, B, et al. (Eds.), The Online Metabolic & Molecular Bases of Inherited Disease. Available at: www.ommbid.com [last accessed June 24, 2020].Google Scholar
Pinto, R, Caseiro, C, Lemos, M, et al. Prevalence of lysosomal storage diseases in Portugal. Eur J Hum Genet 2004;12:8792.Google Scholar
Kelly, TE, Thomas, GH, Taylor, HA Jr., et al. Mucolipidosis III (pseudo-Hurler polydystrophy): clinical and laboratory studies in a series of 12 patients. Johns Hopkins Med J 1975;137:156–75.Google Scholar
Cathey, SS, Leroy, JG, Wood, T, et al. Phenotype and genotype in mucolipidoses II and III alpha/beta: a study of 61 probands. J Med Genet 2010;47:3848.Google Scholar
Kenyon, KR, Sensenbrenner, JA, Wyllie, RG. Hepatic ultrastructure and histochemistry in mucolipidosis II (I-cell disease). Pediatr Res 1973;7:560–8.Google Scholar
Hopwood, JJ, Ballabio, A. Multiple sulfatase deficiency and the nature of the sulfatase family. In Valle, D, Beaudet, AL, Vogelstein, B, et al. (Eds.), The Online Metabolic & Molecular Bases of Inherited Disease. Available at: www.ommbid.com [last accessed June 24, 2020].Google Scholar

References

Russell, DW, Setchell, KDR. Bile acid biosynthesis. Biochemistry 1992;31:4737–49.Google Scholar
Russell, DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 2003;72:137–74.Google Scholar
Hofmann, AF, Sjövall, J, Kurz, G, Radominska, A, Schteingart, CD, Tint, GS, et al. A proposed nomenclature for bile acids. J Lipid Res 1992;33(4):599604.Google Scholar
Setchell, KDR, Dumaswala, R, Colombo, C, Ronchi, M. Hepatic bile acid metabolism during early development revealed from the analysis of human fetal gallbladder bile. J Biol Chem 1988;263(32):16637–44.Google Scholar
Setchell, KDR, Lawson, AM, Tanida, N, Sjövall, J. General methods for the analysis of bile acids and related compounds in feces. J Lipid Res 1983;24:1085–100. PMID: 6631236Google Scholar
Axelson, M, Sjövall, J. Potential bile acid precursors in plasma – Possible indicators of biosynthetic pathways to cholic and chenodeoxycholic acids. J Steroid Biochem 1990;36:631–40.Google Scholar
Setchell, KDR, Schwarz, M, O’Connell, NC, Lund, EG, Davis, DL, Lathe, R, et al. Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7α-hydroxylase gene causes severe neonatal liver disease. J Clin Invest 1998;102(9):1690–703.Google Scholar
Ueki, I, Kimura, A, Nishiyori, A, Chen, HL, Takei, H, Nittono, H, et al. Neonatal cholestatic liver disease in an Asian patient with a homozygous mutation in the oxysterol 7α-hydroxylase gene. J Pediatr Gastroenterol Nutr 2008;46(4):465–9.Google Scholar
Mizuochi, T, Kimura, A, Suzuki, M, Ueki, I, Takei, H, Nittono, H, et al. Successful heterozygous living donor liver transplantation for an oxysterol 7α-hydroxylase deficiency in a Japanese patient. Liver Transpl 2011;17(9):1059–65.Google Scholar
Dai, D, Mills, PB, Footitt, E, et al. Liver disease in infancy caused by oxysterol 7α-hydroxylase deficiency: successful treatment with chenodeoxycholic acid. J Inherit Metab Dis 2014;37:851–61.Google Scholar
Clayton, PT, Leonard, JV, Lawson, AM, Setchell, KD, Andersson, S, Egestad, B, et al. Familial giant cell hepatitis associated with synthesis of 3β,7α-dihydroxy-and 3β,7α,12α-trihydroxy-5-cholenoic acids. J Clin Invest 1987;79(4):1031–8.Google Scholar
Cheng, JB, Jacquemin, E, Gerhardt, M, Nazer, H, Cresteil, D, Heubi, JE, et al. Molecular genetics of 3β-hydroxy-Δ5-C27-steroid oxidoreductase deficiency in 16 patients with loss of bile acid synthesis and liver disease. J Clin Endocrinol Metab 2003;88(4):1833–41.Google Scholar
Eggertsen, G, Olin, M, Andersson, U, Ishida, H, Kubota, S, Hellman, U, et al. Molecular cloning and expression of rabbit sterol 12α-hydroxylase. J Biol Chem 1996;271(50):32269–75.Google Scholar
Gafvels, M, Olin, M, Chowdhary, BP, Raudsepp, T, Andersson, U, Persson, B, et al. Structure and chromosomal assignment of the sterol 12α-hydroxylase gene (CYP8B1) in human and mouse: eukaryotic cytochrome P-450 gene devoid of introns. Genomics 1999;56(2):184–96.Google Scholar
Johansson, G. Effect of cholestyramine and diet on hydroxylations in the biosynthesis and metabolism of bile acids. Eur J Biochem 1970;17(2):292–5.Google Scholar
Kondo, KH, Kai, MH, Setoguchi, Y, Eggertsen, G, Sjoblom, P, Setoguchi, T, et al. Cloning and expression of cDNA of human Δ4-3-oxosteroid 5b-reductase and substrate specificity of the expressed enzyme. Eur J Biochem 1994;219(1–2):357–63.Google Scholar
Axelson, M, Björkhem, I, Reihner, E, Einarsson, K. The plasma level of 7α-hydroxy-4-cholesten-3-one reflects the activity of cholesterol 7α-hydroxylase in man. FEBS Letters 1991;284:216–18.Google Scholar
Clayton, PT, Patel, E, Lawson, AM, Carruthers, RA, Tanner, MS, Strandvik, B, et al. 3-Oxo-Δ4 bile acids in liver disease [letter]. Lancet 1988;1(8597):1283–4.Google Scholar
Inoue, T, Kimura, A, Aoki, K, Tohma, M, Kato, H. Developmental pattern of 3-oxo-Δ4 bile acids in neonatal bile acid metabolism. Arch Dis Child Fetal Neonatal Ed 1997;77(1):F52–6.Google Scholar
Setchell, KDR, Suchy, FJ, Welsh, MB, Zimmer-Nechemias, L, Heubi, J, Balistreri, WF. Δ4-3-oxosteroid 5β-reductase deficiency described in identical twins with neonatal hepatitis. A new inborn error in bile acid synthesis. J Clin Invest 1988;82(6):2148–57.Google Scholar
Sumazaki, R, Nakamura, N, Shoda, J, Kurosawa, T, Tohma, M. Gene analysis in Δ4-3-oxosteroid 5β-reductase deficiency [letter]. Lancet 1997;349(9048):329.Google Scholar
Lemonde, HA, Custard, EJ, Bouquet, J, Duran, M, Overmars, H, Scambler, PJ, et al. Mutations in SRD5B1 (AKR1D1), the gene encoding Δ4-3-oxosteroid 5β-reductase, in hepatitis and liver failure in infancy. Gut 2003;52(10):1494–9.Google Scholar
Drury, JE, Mindnich, R, Penning, TM. Characterization of disease-related 5β-reductase (AKR1D1) mutations reveals their potential to cause bile acid deficiency. J Biol Chem 2010;285(32):24529–37.Google Scholar
Björkhem, I, Hansson, M. Cerebrotendinous xanthomatosis: an inborn error in bile acid synthesis with defined mutations but still a challenge. Biochem Biophys Res Commun 2010;396(1):46–9.Google Scholar
Ferdinandusse, S, Denis, S, Clayton, PT, Graham, A, Rees, JE, Allen, JT, et al. Mutations in the gene encoding peroxisomal 2-methyl-acyl-CoA racemase cause adult-onset sensory motor neuropathy. Nat Genet 2000;24:188–91.Google Scholar
Setchell, KDR, Heubi, JE, Bove, KE, O’Connell, NC, Brewsaugh, T, Steinberg, SJ, et al. Liver disease caused by failure to racemize trihydroxycholestanoic acid: gene mutation and effect of bile acid therapy. Gastroenterology 2003;124(1):217–32.Google Scholar
Thigpen, AE, Silver, RI, Guileyardo, JM, Casey, ML, McConnell, JD, Russell, DW. Tissue distribution and ontogeny of steroid 5α-reductase isozyme expression. J Clin Invest 1993;92(2):903–10.Google Scholar
Dumaswala, R, Setchell, KDR, Zimmer-Nechemias, L, Iida, T, Goto, J, Nambara, T. Identification of 3α,4β,7α-trihydroxy-5β-cholanoic acid in human bile: reflection of a new pathway in bile acid metabolism in humans. J Lipid Res 1989;30(6):847–56.Google Scholar
Shonsey, EM, Sfakianos, M, Johnson, M, He, D, Falany, CN, Falany, J, et al. Bile acid coenzyme A: amino acid N-acyltransferase in the amino acid conjugation of bile acids. Methods Enzymol 2005;400:374–94.Google Scholar
Setchell, KDR, Heubi, JE, Shah, S, et al. Genetic defects in bile acid conjugation cause fat-soluble vitamin deficiency. Gastroenterology 2013;144:945–55.Google Scholar
Carlton, VEH, Harris, BZ, Puffenberger, EG, Batta, AK, Knisely, AS, Robinson, DL, et al. Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nature Genetics 2003;34:91–6.Google Scholar
Chong, CP, Mills, PB, McClean, P, Gissen, P, Bruce, C, Stahlschmidt, J, et al. Bile acid-CoA ligase deficiency – a new inborn error of bile acid metabolism. J Inherit Metab Dis 2012;35:521–30.Google Scholar
Setchell, KDR, Harrison, DL, Gilbert, JM, Muphy, GM. Serum unconjugated bile acids: qualitative and quantitative profiles in ileal resection and bacterial overgrowth.Clin Chim Acta 1985;152(3):297306.Google Scholar
Galloway, D, Mezoff, E, Zhang, W, Byrd, M, Cole, C, Aban, I, Kocoshis, S, Setchell, KDR, Heubi, JE. Serum unconjugated bile acids and small bowel bacterial overgrowth in pediatric intestinal failure: a pilot study. J Parent Enter Nutr 2019;43(2):263270. doi. 10.1002/jpen.1316. 0148–6071 (Linking); PMCID PMC6344318Google Scholar
Setchell, KDR, Heubi, J. Defects in bile acid synthesis – diagnosis and treatment. J Pediatr Gastroenterol Nutr 2006;43(Supp 1):S17S22.Google Scholar
Haas, D, Gan-Schreier, H, Langhans, CD, Rohrer, T, Engelmann, G, Heverin, M, et al. Differential diagnosis in patients with suspected bile acid synthesis defects. World J Gastroenterol 2012;18(10):1067–76.Google Scholar
Pullinger, CR, Eng, C, Salen, G, Shefer, S, Batta, AK, Erickson, S, et al. Human cholesterol 7a-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest 2002;110:109–17.Google Scholar
von Bahr, S, Björkhem, I, Van’t Hooft, F, Alvelius, G, Nemeth, A, Sjövall, J, et al. Mutation in the sterol 27-hydroxylase gene associated with fatal cholestasis in infancy. J Pediatr Gastroenterol Nutr 2005;40(4):481–6.Google Scholar
Jahnel, J, Zohrer, E, Fischler, B, et al. Attempt to determine the prevalence of two inborn errors of primary bile acid synthesis: Results of a European survey. J Pediatr Gastroent Nutr 2017;64:864–8.Google Scholar
Al-Hussaini, A, Setchell, KDR, Al-Saleem, B, Heubi, JE, Lone, K, Davit-Spraul, A, Jacquiemin, E. Bile acid synthesis disorders in Arabs: a 10-year screening study. J Pediatr Gastroent Nutr 2017;65:613–20. PMID 28902093Google Scholar
Iser, J, Dowling, R, Murphy, G. (1977). Congenital bile salt deficiency associated with 28 years of intractable constipation. In Paumgartner, G, Stiehl, A, (Eds.), Bile Acid Metabolism in Health and Disease (pp. 231–4). Lancaster: MTP Press.Google Scholar
Dowling, RH. (1982). Bile acids in constipation and diarrhoea. In Barbara, L, Dowling, RH, Hofmann, AF, (Eds.), Bile Acids in Gastroenterology (pp. 157–71). Lancaster: MTP Press.Google Scholar
Molho-Pessach, V, Rios, JJ, Xing, C, Setchell, KDR, Cohen, JC, Hobbs, HH. Homozygosity mapping identifies a bile acid biosynthetic defect in an adult with cirrhosis of unknown etiology. Hepatology 2012;55(4):1139–45.Google Scholar
Fischler, B, Bodin, K, Stjernman, H, Olin, M, Hansson, M, Sjövall, J, et al. Cholestatic liver disease in adults may be due to an inherited defect in bile acid biosynthesis. J Intern Med 2007;262(2):254–62.Google Scholar
Kimura, A, Yuge, K, Yukizane, S, Kage, M, Nittono, H, Mahara, R, et al. Abnormal low ratio of cholic acid to chenodeoxycholic acid in a cholestatic infant with severe hypoglycemia. J Pediatr Gastroenterol Nutr 1991;12(3):383–7.Google Scholar
Yamato, Y, Kimura, A, Murai, T, Yoshimura, T, Kurosawa, T, Terazawa, S, et al. 3β-hydroxy-Δ5 -C27-steroid dehydrogenase deficiency: diagnosis and treatment. J Paediatr Child Health 2001;37(5):516–19.Google Scholar
Ichimiya, H, Egestad, B, Nazer, H, Baginski, ES, Clayton, PT, Sjövall, J. Bile acids and bile alcohols in a child with hepatic 3β-hydroxy-Δ5-C27-steroid dehydrogenase deficiency: effects of chenodeoxycholic acid treatment. J Lipid Res 1991;32(5):829–41.Google Scholar
Gonzales, E, Gerhardt, MF, Fabre, M, Setchell, KD, Davit-Spraul, A, Vincent, I, et al. Oral cholic acid for hereditary defects of primary bile acid synthesis: a safe and effective long-term therapy.Gastroenterology 2009;137(4):1310–20 e1–3.Google Scholar
Bove, KE, Heubi, JE, Balistreri, WF, Setchell, KDR. Bile acid synthetic defects and liver disease: a comprehensive review. Pediatr Dev Pathol 2004;7(4):315–34.Google Scholar
Witzleben, CL, Piccoli, DA, Setchell, KDR. A new category of causes of intrahepatic cholestasis. Pediatr Pathol 1992;12(2):269–74.Google Scholar
Bove, K, Daugherty, CC, Tyson, W, Heubi, JE, Balistreri, WF, Setchell, KDR. Bile acid synthetic defects and liver disease. Pediatr Dev Path 2000;3:116.Google Scholar
Heubi, JE, Bove, KE, Setchell, KDR. Oral cholic acid is efficacious and well tolerated in patients with bile acid synthetic and Zellweger Spectrum disorders. J Pediatr Gastroent Nutr 2017;65:321–6. PMID 28644367Google Scholar
Stieger, B, Zhang, J, O’Neill, B, Sjövall, J, Meier, PJ. Differential interaction of bile acids from patients with inborn errors of bile acid synthesis with hepatocellular bile acid transporters. Eur J Biochem 1997;244(1):3944.Google Scholar
Daugherty, CC, Setchell, KDR, Heubi, JE, Balistreri, WF. Resolution of liver biopsy alterations in three siblings with bile acid treatment of an inborn error of bile acid metabolism (Δ4-3-oxosteroid 5β-reductase deficiency). Hepatology 1993;18(5):1096–101.Google Scholar
Gonzales, E, Malarazzo, L, Franchi-Abella, S, et al. Cholic acid for primary bile acid synthesis defects: a life-saving therapy allowing a favorable outcome in adulthood. Orphanet J Rare Dis 2018;13(1):190. doi 10.1186/s13023-018-0920-5Google Scholar
Horslen, SP, Lawson, AM, Malone, M, Clayton, PT. 3β-hydroxy-Δ5-C27-steroid dehydrogenase deficiency: effect of chenodeoxycholic acid therapy on liver histology. J Inherit Metab Dis 1992;15(1):3846.Google Scholar
Riello, L, D’Antiga, L, Guido, M, Alaggio, R, Giordano, G, Zancan, L. Titration of bile acid supplements in 3β-hydroxy-Δ5-C27-steroid dehydrogenase/isomerase deficiency. J Pediatr Gastroenterol Nutr 2010;50(6):655–60.Google Scholar
Zhang, M, Setchell, KDR, Zhao, J, Gong, J, Wang, J-S. Δ4-3-Oxosteroid 5β-reductase deficiency: responses and long-term outcomes from oral bile acid therapy. World J Gastroenterol 2019;25(7):859–69. doi: 10.3748/wjg.v25.i7.859 ; 1007–9327 (Linking); PMCID PMC6385010Google Scholar
Shneider, BL, Setchell, KD, Whitington, PF, Neilson, KA, Suchy, FJ. Δ4-3-oxosteroid 5β-reductase deficiency causing neonatal liver failure and hemochromatosis. J Pediatr 1994;124(2):234–8.Google Scholar
Clayton, PT, Mills, KA, Johnson, AW, Barabino, A, Marazzi, MG. Δ4-3-oxosteroid 5β-reductase deficiency: failure of ursodeoxycholic acid treatment and response to chenodeoxycholic acid plus cholic acid. Gut 1996;38(4):623–8.Google Scholar
Setoguchi, T, Salen, G, Tint, GS, Mosbach, EH. A biochemical abnormality in cerebrotendinous xanthomatosis. Impairment of bile acid biosynthesis associated with incomplete degradation of the cholesterol side chain. J Clin Invest 1974;53(5):1393–401.Google Scholar
Clayton, PT, Verrips, A, Sistermans, E, Mann, A, Mieli-Vergani, G, Wevers, R. Mutations in the sterol 27-hydroxylase gene (CYP27A) cause hepatitis of infancy as well as cerebrotendinous xanthomatosis. J Inherit Metab Dis 2002;25(6):501–13.Google Scholar
Gong, J-Y, Setchell, KDR, Zhao, J, Zhang, W, Wolfe, B, Lu, Y, Lackner, K, Knisely, AS, Wang, N-L, Hao, C-Z, Zhang, MH, Wang, J-S. Severe neonatal cholestasis in cerebrotendinous xanthomatosis: genetics, immunostaining, mass spectrometry. J Pediatr Gastroenterol Nutr 2017;65(5):561–8. doi: 10.1097/MPGGoogle Scholar
Koopman, BJ, van der Molen, JC, Wolthers, BG, de Jager, AE, Waterreus, RJ, Gips, CH. Capillary gas chromatographic determination of cholestanol/cholesterol ratio in biological fluids. Its potential usefulness for the follow-up of some liver diseases and its lack of specificity in diagnosing CTX (cerebrotendinous xanthomatosis). Clin Chim Acta 1984;137(3):305–15.Google Scholar
Berginer, VM, Salen, G, Shefer, S. Long-term treatment of cerebrotendinous xanthomatosis with chenodeoxycholic acid. N Engl J Med 1984;311(26):1649–52.Google Scholar
Clayton, PT, Johnson, AW, Mills, KA, et al. Ataxia associated with increased plasma concentrations of pristanic acid, phytanic acid and C27 bile acids but normal fibroblast branched-chain fatty acid oxidation. J Inherit Metab Dis 1996;19:761–8.Google Scholar
Vanhove, GF, Van Veldhoven, PP, Fransen, M, et al. The CoA esters of 2-methyl-branched chain fatty acids and of the bile acid intermediates di- and trihydroxycoprostanic acids are oxidized by one single peroxisomal branched chain acyl-CoA oxidase in human liver and kidney. J Biol Chem 1993;268:10335–44.Google Scholar
Christensen, E, Van Eldere, J, Brandt, NJ, et al. A new peroxisomal disorder: di- and trihydroxycholestanaemia due to a presumed trihydroxycholestanoyl-CoA oxidase deficiency. J Inherit Metab Dis 1990;13:363–6.Google Scholar
Vilarinho, S, Sari, S, Mazzacuva, F, et al. ACOX2 deficiency: a disorder of bile acid synthesis with transaminase elevation, liver fibrosis, ataxia, and cognitive impairment. PNAS 2016;113:11289–93.Google Scholar
Ferinandusse, S, Jimenez-Sanchez, G, Koster, J, et al. A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Human Mole Gen 2015; 24:361–70.Google Scholar
Clayton, PT, Casteels, M, Mieli-Vergani, G, Lawson, AM. Familial giant cell hepatitis with low bile acid concentrations and increased urinary excretion of specific bile alcohols: a new inborn error of bile acid synthesis? Pediatr Res 1995;37(4 Pt 1):424–31.Google Scholar
Lawson, AM, Madigan, MJ, Shortland, D, Clayton, PT. Rapid diagnosis of Zellweger syndrome and infantile Refsum’s disease by fast atom bombardment–mass spectrometry of urine bile salts. Clin Chim Acta 1986;161(2):221–31.Google Scholar
Setchell, KDR, Bragetti, P, Zimmer-Nechemias, L, Daugherty, C, Pelli, MA, Vaccaro, R, et al. Oral bile acid treatment and the patient with Zellweger syndrome. Hepatology 1992;15(2):198207.Google Scholar
Zeharia, A, Ebberink, MS, Wanders, RJ, Waterham, HR, Gutman, A, Nissenkorn, A, et al. A novel PEX12 mutation identified as the cause of a peroxisomal biogenesis disorder with mild clinical phenotype, mild biochemical abnormalities in fibroblasts and a mosaic catalase immunofluorescence pattern, even at 40 degrees C. J Hum Genet 2007;52(7):599606.Google Scholar
Berendse, K, Klouwer, FC, Koot, BG, et al. Cholic acid therapy in Zellweger spectrum disorders. J Inherit Metab Dis 2016;39(6):859–68.Google Scholar
Klouwer, FCC, Koot, BGP, Berendse, K, et al. The cholic acid extension study in Zellweger spectrum disorders: results and implications for therapy. J Inherit Metab Disease 2019;42:303–12. Doi:10.1007/s10545-018-0194-zGoogle Scholar
Heubi, J, Setchell, KDR, Shah, S, Jha, P, Buckley, D, et al. Oral glycocholic acid treatment of patients with bile acid amidation defects improves growth and fat-soluble vitamin absorption. Hepatology 2009;50:895A.Google Scholar
Hofmann, AF, Strandvik, B. Defective bile acid amidation: predicted features of a new inborn error of metabolism. Lancet 1988;2(8606):311–13.Google Scholar
Heubi, JE, Balistreri, WF, Partin, JC, Schubert, WK, McGraw, CA. Refractory infantile diarrhea due to primary bile acid malabsorption. J Pediatr 1979;94(4):546–51.Google Scholar
Smith, DW, Lemli, L, Opitz, JM. A newly recognized syndrome of multiple congenital anomalies. J Pediatr 1964;64:210–17.Google Scholar

References

Wanders, RJ, et al. The enzymology of mitochondrial fatty acid beta-oxidation and its application to follow-up analysis of positive neonatal screening results. J Inherit Metab Dis 2010;33(5):479–94.Google Scholar
Longo, N, Frigeni, M, Pasquali, M. Carnitine transport and fatty acid oxidation. Biochim Biophys Acta 2016;1863(10):2422–35.Google Scholar
Saudubray, JM, et al. Recognition and management of fatty acid oxidation defects: a series of 107 patients. J Inherit Metab Dis 1999;22(4):488502.CrossRefGoogle ScholarPubMed
Rinaldo, P, Matern, D, Bennett, MJ. Fatty acid oxidation disorders. Annu Rev Physiol 2002;64:477502.CrossRefGoogle ScholarPubMed
Vockley, J, Whiteman, DA. Defects of mitochondrial beta-oxidation: a growing group of disorders. Neuromuscul Disord 2002;12(3):235–46.Google Scholar
Lindner, M, Hoffmann, GF, Matern, D. Newborn screening for disorders of fatty-acid oxidation: experience and recommendations from an expert meeting. J Inherit Metab Dis 2010;33(5):521–6.Google Scholar
Bennett, MJ, et al. Newborn screening for metabolic disorders: how are we doing, and where are we going? Clin Chem 2012;58(2):324–31.Google Scholar
McGarry, JD, Foster, DW. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem 1980;49:395420.Google Scholar
Gulick, T, et al. The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci U S A 1994;91(23):11012–16.Google Scholar
Swigonova, Z, Mohsen, AW, Vockley, J. Acyl-CoA dehydrogenases: dynamic history of protein family evolution. J Mol Evol 2009;69(2):176–93.CrossRefGoogle ScholarPubMed
Strauss, AW, et al. Molecular basis of human mitochondrial very-long-chain acyl-CoA dehydrogenase deficiency causing cardiomyopathy and sudden death in childhood. Proc Natl Acad Sci U S A 1995;92(23):10496–500.Google Scholar
Eder, M, et al. Characterization of human and pig kidney long-chain-acyl-Coa dehydrogenases and their role in beta-oxidation. Eur J Biochem 1997;245(3):600–7.Google Scholar
Indo, Y, et al. Immunochemical characterization of variant long-chain acyl-CoA dehydrogenase in cultured fibroblasts from nine patients with long-chain acyl-CoA dehydrogenase deficiency. Pediatr Res 1991;30(3):211–15.Google Scholar
Ikeda, Y, Dabrowski, C, Tanaka, K. Separation and properties of five distinct acyl-CoA dehydrogenases from rat liver mitochondria. Identification of a new 2-methyl branched chain acyl-CoA dehydrogenase. J Biol Chem 1983;258(2):1066–76.Google Scholar
Finocchiaro, G, Ito, M, Tanaka, K. Purification and properties of short chain acyl-CoA, medium chain acyl-CoA, and isovaleryl-CoA dehydrogenases from human liver. J Biol Chem 1987;262(17):7982–9.Google Scholar
Oey, NA, et al. Acyl-CoA dehydrogenase 9 (ACAD 9) is the long-chain acyl-CoA dehydrogenase in human embryonic and fetal brain. Biochem Biophys Res Commun 2006;346(1):33–7.Google Scholar
Indo, Y, et al. Molecular cloning and nucleotide sequence of cDNAs encoding human long-chain acyl-CoA dehydrogenase and assignment of the location of its gene (ACADL) to chromosome 2. Genomics 1991;11(3):609–20.Google Scholar
Ensenauer, R, et al. Human acyl-CoA dehydrogenase-9 plays a novel role in the mitochondrial beta-oxidation of unsaturated fatty acids. J Biol Chem 2005;280(37):32309–16.Google Scholar
Repp, BM, et al. Clinical, biochemical and genetic spectrum of 70 patients with ACAD9 deficiency: is riboflavin supplementation effective? Orphanet J Rare Dis;2018;13(1):120.Google Scholar
Andresen, BS, et al. Cloning and characterization of human very-long-chain acyl-CoA dehydrogenase cDNA, chromosomal assignment of the gene and identification in four patients of nine different mutations within the VLCAD gene. Hum Mol Genet 1996;5(4):461–72.Google Scholar
He, M, et al. Identification and characterization of new long chain acyl-CoA dehydrogenases. Mol Genet Metab 2011;102(4):418–29.Google Scholar
Matsubara, Y, et al. Molecular cloning of cDNAs encoding rat and human medium-chain acyl-CoA dehydrogenase and assignment of the gene to human chromosome 1. Proc Natl Acad Sci U S A 1986;83(17):6543–7.CrossRefGoogle ScholarPubMed
Corydon, MJ, et al. Structural organization of the human short-chain acyl-CoA dehydrogenase gene. Mamm Genome 1997;8(12):922–6.CrossRefGoogle ScholarPubMed
Uchida, Y, et al. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. II. Purification and properties of enoyl-coenzyme A (CoA) hydratase/3-hydroxyacyl-CoA dehydrogenase/3-ketothiolase trifunctional protein. J Biol Chem 1992;267:1034–41.Google Scholar
Wanders, RJ, et al. Human trifunctional protein deficiency: a new disorder of mitochondrial fatty acid beta-oxidation. Biochem Biophys Res Commun 1992;188(3):1139–45.Google Scholar
Ijlst, L, et al. Common missense mutation G1528 C in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Characterization and expression of the mutant protein, mutation analysis on genomic DNA and chromosomal localization of the mitochondrial trifunctional protein alpha subunit gene. J Clin Invest 1996;98(4):1028–33.CrossRefGoogle Scholar
Kanazawa, M, et al. Molecular cloning and sequence analysis of the cDNA for human mitochondrial short-chain enoyl-CoA hydratase. Enzyme Protein 1993;47(1):913.Google Scholar
He, XY, Yang, SY, Schulz, H. Assay of L-3-hydroxyacyl-coenzyme A dehydrogenase with substrates of different chain lengths. Anal Biochem 1989;180(1):105–9.Google Scholar
Yang, SY, He, XY, Schulz, H. Multiple functions of type 10 17beta-hydroxysteroid dehydrogenase. Trends Endocrinol Metab 2005;16(4):167–75.Google Scholar
Brunengraber, H, Roe, CR. Anaplerotic molecules: current and future. J Inherit Metab Dis 2006;29(2–3):327–31.Google Scholar
Vockley, J, et al. UX007 for the treatment of long chain-fatty acid oxidation disorders: safety and efficacy in children and adults following 24 weeks of treatment. Mol Genet Metab 2017;120(4):370–7.Google Scholar
Passi, S, et al. Saturated dicarboxylic acids as products of unsaturated fatty acid oxidation. Biochim Biophys Acta 1993;1168(2):190–8.Google Scholar
Roe, DS, et al. Oxidation of unsaturated fatty acids by human fibroblasts with very-long-chain acyl-CoA dehydrogenase deficiency: aspects of substrate specificity and correlation with clinical phenotype. Clin Chim Acta 2001;312(1–2):5567.Google Scholar
Longo, N, Amat di San Filippo, C, Pasquali, M. Disorders of carnitine transport and the carnitine cycle. Am J Med Genet C Semin Med Genet 2006;142(2):7785.Google Scholar
Celestino-Soper, PB, et al. A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism. Proc Natl Acad Sci U S A 2012;109(21):7974–81.Google Scholar
Brown, NF, et al. Molecular characterization of L-CPT I deficiency in six patients: insights into function of the native enzyme. J Lipid Res 2001;42(7):1134–42.Google Scholar
Brivet, M, et al. Defects in activation and transport of fatty acids. J Inherit Metab Dis 1999;22(4):428–41.Google Scholar
Spiekerkoetter, U, Mitochondrial fatty acid oxidation disorders: clinical presentation of long-chain fatty acid oxidation defects before and after newborn screening. J Inherit Metab Dis 2010;33(5):527–32.Google Scholar
Pena, LD, et al. Outcomes and genotype-phenotype correlations in 52 individuals with VLCAD deficiency diagnosed by NBS and enrolled in the IBEM-IS database. Mol Genet Metab 2016;118(4):272–81.Google Scholar
Spiekerkoetter, U, Mayatepek, E. Update on mitochondrial fatty acid oxidation disorders. J Inherit Metab Dis 2010;33(5):467–8.Google Scholar
Spiekerkoetter, U, et al. Tandem mass spectrometry screening for very long-chain acyl-CoA dehydrogenase deficiency: the value of second-tier enzyme testing. J Pediatr 2010;157(4):668–73.Google Scholar
Vianey-Saban, C, et al. Mitochondrial very-long-chain acyl-coenzyme A dehydrogenase deficiency: clinical characteristics and diagnostic considerations in 30 patients. Clin Chim Acta 1998;269(1):4362.Google Scholar
Andresen, BS, et al. The mutational spectrum in very long-chain acyl-Coa dehydrogenase deficiency. J Inherit Metab Dis 1996;19(2):169–72.Google Scholar
Gregersen, N, Andresen, BS, Bross, P. Prevalent mutations in fatty acid oxidation disorders: diagnostic considerations. Eur J Pediatr 2000;159(Suppl 3):S213–18.Google Scholar
He, M, et al. A new genetic disorder in mitochondrial fatty acid beta-oxidation: ACAD9 deficiency. Am J Hum Genet 2007;81(1):87103.Google Scholar
Schiff, M, et al. Complex I assembly function and fatty acid oxidation enzyme activity of ACAD9 both contribute to disease severity in ACAD9 deficiency. Hum Mol Genet 2015;24(11):3238–47.Google Scholar
Spiekerkoetter, U, et al. Molecular and phenotypic heterogeneity in mitochondrial trifunctional protein deficiency due to beta-subunit mutations. Hum Mutat 2003;21(6):598607.Google Scholar
Spiekerkoetter, U, et al. General mitochondrial trifunctional protein (TFP) deficiency as a result of either alpha- or beta-subunit mutations exhibits similar phenotypes because mutations in either subunit alter TFP complex expression and subunit turnover. Pediatr Res 2004;55(2):190–6.Google Scholar
Gillingham, M, et al. Dietary management of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD). A case report and survey. J Inherit Metab Dis 1999;22(2):123–31.Google Scholar
Gillingham, MB, et al. Effect of optimal dietary therapy upon visual function in children with long-chain 3-hydroxyacyl CoA dehydrogenase and trifunctional protein deficiency. Mol Genet Metab 2005;86(1–2):124–33.Google Scholar
Xia, C, et al. Crystal structure of human mitochondrial trifunctional protein, a fatty acid beta-oxidation metabolon. Proc Natl Acad Sci U S A 2019;116(13):6069–74.Google Scholar
Tanaka, K, et al. Mutations in the medium chain acyl-CoA dehydrogenase (MCAD) gene. Hum Mutat 1992;1(4):271–9.Google Scholar
Bentler, K, et al. 221 newborn-screened neonates with medium-chain acyl-coenzyme A dehydrogenase deficiency: findings from the Inborn Errors of Metabolism Collaborative. Mol Genet Metab 2016;119(1–2):7582.CrossRefGoogle ScholarPubMed
Brackett, JC, et al. A novel mutation in medium chain acyl-CoA dehydrogenase causes sudden neonatal death. J Clin Invest 1994;94(4):1477–83.Google Scholar
Yusupov, R, et al. Sudden death in medium chain acyl-coenzyme a dehydrogenase deficiency (MCADD) despite newborn screening. Mol Genet Metab 2010;101(1):33–9.Google Scholar
Matsubara, Y, et al. Identification of a common mutation in patients with medium-chain acyl-CoA dehydrogenase deficiency. Biochem Biophys Res Commun 1990;171(1):498505.Google Scholar
Andresen, BS, et al. Molecular diagnosis and characterization of medium-chain acyl-CoA dehydrogenase deficiency. Scand J Clin Lab Invest Suppl 1995;220:925.Google Scholar
Yokota, I, et al. Impaired tetramer assembly of variant medium-chain acyl-coenzyme A dehydrogenase with a glutamate or aspartate substitution for lysine 304 causing instability of the protein. J Biol Chem 1992;267(36):26004–10.Google Scholar
Waisbren, SE, et al. Neuropsychological outcomes in fatty acid oxidation disorders: 85 cases detected by newborn screening. Dev Disabil Res Rev 2013;17(3):260–8.Google Scholar
Gallant, NM, et al. Biochemical, molecular, and clinical characteristics of children with short chain acyl-CoA dehydrogenase deficiency detected by newborn screening in California. Mol Genet Metab 2012;106(1):5561.Google Scholar
Pedersen, CB, et al. The ACADS gene variation spectrum in 114 patients with short-chain acyl-CoA dehydrogenase (SCAD) deficiency is dominated by missense variations leading to protein misfolding at the cellular level. Hum Genet 2008;124(1):4356.Google Scholar
Nguyen, TV, et al. Purification and characterization of two polymorphic variants of short chain acyl-CoA dehydrogenase reveal reduction of catalytic activity and stability of the Gly185Ser enzyme. Biochemistry 2002;41(37):11126–33.Google Scholar
Molven, A, et al. Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation. Diabetes 2004;53(1):221–7.Google Scholar
Flanagan, SE, et al. Genome-wide homozygosity analysis reveals HADH mutations as a common cause of diazoxide-responsive hyperinsulinemic-hypoglycemia in consanguineous pedigrees. J Clin Endocrinol Metab 2011;96(3):E498502.Google Scholar
Kamijo, T, et al. Medium chain 3-ketoacyl-coenzyme A thiolase deficiency: a new disorder of mitochondrial fatty acid beta-oxidation. Pediatr Res 1997;42(5):569–76.Google Scholar
Frerman, FE, Goodman, SI. Deficiency of electron transfer flavoprotein or electron transfer flavoprotein: ubiquinoneoxidoreductase in glutaric acidemia type II fibroblasts. Proc Natl Acad Sci U S A 1985;82(13):4517–20.Google Scholar
Loehr, JP, Goodman, SI, Frerman, FE. Glutaric acidemia type II: heterogeneity of clinical and biochemical phenotypes. Pediatr Res 1990;27(3):311–15.Google Scholar
Olsen, RK, et al. ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain 2007;130(Pt 8):2045–54.Google Scholar
Spaan, AN, et al. Identification of the human mitochondrial FAD transporter and its potential role in multiple acyl-CoA dehydrogenase deficiency. Mol Genet Metab 2005;86(4):441–7.Google Scholar
Olsen, RKJ, et al. Riboflavin-responsive and non-responsive mutations in FAD synthase cause multiple acyl-CoA dehydrogenase and combined respiratory-chain deficiency. Am J Hum Genet 2016;98(6):1130–45.Google Scholar
Schiff, M, et al. SLC25A32 mutations and riboflavin-responsive exercise intolerance. N Engl J Med 2016;374(8):795–7.Google Scholar
Duran, M, et al. Sudden child death and “healthy” affected family members with medium-chain acyl-coenzyme A dehydrogenase deficiency. Pediatrics 1986;78(6):1052–7.Google Scholar
Harpey, J-P, Charpentier, C, Paturneau-Jouas, M. Sudden infant death syndrome and inherited disorders of fatty acid b-oxidation. Biol Neonate 1990;58(Suppl 1):7080.Google Scholar
Bennett, MJ, et al. Medium-chain acyl-CoA dehydrogenase deficiency: postmortem diagnosis in a case of sudden infant death and neonatal diagnosis of an affected sibling. Pediatr Pathol 1991;11(6):889–95.Google Scholar
Bennett, MJ, Powell, S. Metabolic disease and sudden, unexpected death in infancy. Hum Pathol 1994;25(8):742–6.Google Scholar
Rashed, MS, et al. Inborn errors of metabolism diagnosed in sudden death cases by acylcarnitine analysis of postmortem bile. Clin Chem 1995;41(8 Pt 1):1109–14.Google Scholar
Waisbren, SE, et al. Effect of expanded newborn screening for biochemical genetic disorders on child outcomes and parental stress. JAMA 2003;290(19):2564–72.Google Scholar
Rinaldo, P, Cowan, TM, Matern, D. Acylcarnitine profile analysis. Genet Med 2008;10(2):151–6.Google Scholar
Rinaldo, P, et al. Newborn screening of metabolic disorders: recent progress and future developments. Nestle Nutr Workshop Ser Pediatr Program 2008;62:8193; discussion 93–6.Google Scholar
Smith, EH, Matern, D. Acylcarnitine analysis by tandem mass spectrometry. Curr Protoc Hum Genet 2010;17(8):1781–20.Google Scholar
McHugh, D, et al. Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project. Genet Med 2011;13(3):230–54.Google Scholar
Vockley, J, Singh, RH, Whiteman, DA. Diagnosis and management of defects of mitochondrial beta-oxidation. Curr Opin Clin Nutr Metab Care 2002;5(6):601–9.Google Scholar
Spiekerkoetter, U, et al. Current issues regarding treatment of mitochondrial fatty acid oxidation disorders. J Inherit Metab Dis 2010;33(5):555–61.Google Scholar
Stanley, CA, et al. Medium-chain acyl-CoA dehydrogenase deficiency in children with non-ketotic hypoglycemia and low carnitine levels. Pediatr Res 1983;17(11):877–84.Google Scholar
Derks, TG, et al. Safe and unsafe duration of fasting for children with MCAD deficiency. Eur J Pediatr 2007;166(1):511.Google Scholar
Longo, N, et al. Disorders of creatine transport and metabolism. Am J Med Genet C Semin Med Genet 2011;157(1):72–8.CrossRefGoogle Scholar
Rinaldo, P, et al. Effect of treatment with glycine and L-carnitine in medium-chain acyl-coenzyme A dehydrogenase deficiency. J Pediatr 1993;122(4):580–4.Google Scholar
Gillingham, MB, et al. Effects of higher dietary protein intake on energy balance and metabolic control in children with long-chain 3-hydroxy acyl-CoA dehydrogenase (LCHAD) or trifunctional protein (TFP) deficiency. Mol Genet Metab 2007;90(1):64–9.Google Scholar
Ruiz-Sanz, JI, et al. Polyunsaturated fatty acid deficiency during dietary treatment of very long-chain acyl-CoA dehydrogenase deficiency. Rescue with soybean oil. J Inherit Metab Dis 2001;24(4):493503.Google Scholar
Roe, CR, et al. Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest 2002;110(2):259–69.Google Scholar
Kinman, RP, et al. Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. Am J Physiol Endocrinol Metab 2006;291(4):E860–6.Google Scholar
Roe, CR, Brunengraber, H. Anaplerotic treatment of long-chain fat oxidation disorders with triheptanoin: review of 15 years’ experience. Mol Genet Metab 2015;116(4):260–8.Google Scholar
Vockley, J, et al. Long-term major clinical outcomes in patients with long chain fatty acid oxidation disorders before and after transition to triheptanoin treatment–A retrospective chart review. Mol Genet Metab 2015;116(1–2):5360.Google Scholar
Gillingham, MB, et al. Triheptanoin versus trioctanoin for long-chain fatty acid oxidation disorders: a double blinded, randomized controlled trial. J Inherit Metab Dis. 2017;40(6):831–43.Google Scholar
Vockley, J, et al. Results from a 78-week, single-arm, open-label phase 2 study to evaluate UX007 in pediatric and adult patients with severe long-chain fatty acid oxidation disorders (LC-FAOD). J Inherit Metab Dis 2019;42(1):169–77.Google Scholar
Bonnefont, JP, et al. Bezafibrate for an inborn mitochondrial beta-oxidation defect. N Engl J Med 2009;360(8):838–40.Google Scholar
Bonnefont, JP, et al. Long-term follow-up of bezafibrate treatment in patients with the myopathic form of carnitine palmitoyltransferase 2 deficiency. Clin Pharmacol Ther 2010;88(1):101–8.Google Scholar
Ibdah, JA, et al. A fetal fatty-acid oxidation disorder as a cause of liver disease in pregnant women. N Engl J Med 1999;340(22):1723–31.Google Scholar
den Boer, ME, et al. Heterozygosity for the common LCHAD mutation (1528 g>C) is not a major cause of HELLP syndrome and the prevalence of the mutation in the Dutch population is low. Pediatr Res 2000;48(2):151–4.Google Scholar
Nelson, J, Lewis, B, Walters, B. The HELLP syndrome associated with fetal medium-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2000;23(5):518–19.Google Scholar
Mutze, S, et al. Neither maternal nor fetal mutation (E474Q) in the alpha-subunit of the trifunctional protein is frequent in pregnancies complicated by HELLP syndrome. J Perinat Med 2007;35(1):7680.Google Scholar

References

Gorman, GS, Chinnery, PF, DiMauro, S, et al. Mitochondrial diseases. Nat Rev Dis Primers 2016;2:16080.Google Scholar
Lee, WS, Sokol, RJ. Mitochondrial hepatopathies: advances in genetics and pathogenesis. Hepatology 2007;45:1555–65.Google Scholar
Sun, N, Youle, RJ, Finkel, T. The mitochondrial basis of aging. Mol Cell 2016;61:654–66.Google Scholar
Chinnery, PF, Hudson, G. Mitochondrial genetics. Br Med Bull 2013;106:135–59.Google Scholar
Calvo, SE, Clauser, KR, Mootha, VK. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 2016;44:D1251D1257.Google Scholar
Poulton, J, Finsterer, J, Yu-Wai-Man, P. Genetic counselling for maternally inherited mitochondrial disorders. Mol Diagn Ther 2017;21:419–29.Google Scholar
Nunnari, J, Suomalainen, A. Mitochondria: in sickness and in health. Cell 2012;148:1145–59.Google Scholar
Wai, T, Langer, T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab Epub January 2, 2016. Accessed at: http://dx.doi.org/10.1016/j.tem.2015.12.001Google Scholar
Vafai, SB, Mootha, VK. Mitochondrial disorders as windows into an ancient organelle. Nature 2012;491:374–83.Google Scholar
Indo, HP, Yen, H-C, Nakanishi, I, et al. A mitochondrial superoxide theory for oxidative stress diseases and aging. J Clin Biochem Nutr 2015;56:17.Google Scholar
Skladal, D, Halliday, J, Thorburn, DR. Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 2003;126:1905–12.Google Scholar
Karadimas, CL, Vu, TH, Holve, SA, et al. Navajo neurohepatopathy is caused by a mutation in the MPV17 gene. Am J Hum Genet 2006;79:544–8.Google Scholar
Gorman, GS, Schaefer, AM, Ng, Y, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol 2015;77:753–9.Google Scholar
Martikainen, MH, Chinnery, PF. Mitochondrial disease: mimics and chameleons. Pract Neurol Epub July 22, 2015. Accessed at: http://dx.doi.org/10.1136/practneurol-2015–001191Google Scholar
Viscomi, C, Zeviani, M. MtDNA-maintenance defects: syndromes and genes. J Inherit Metab Dis 2017;40:587–99.Google Scholar
Fellman, V, Kotarsky, H. Mitochondrial hepatopathies in the newborn period. Semin Fetal Neonatal Med 2011;16:222–8.Google Scholar
Sundaram, SS, Alonso, EM, Narkewicz, MR, Zhang, S, Squires, RH, Pediatric Acute Liver Failure Study Group. Characterization and outcomes of young infants with acute liver failure. J Pediatr 2011;159:813–18.Google Scholar
Lee, WS, McKiernan, P, Kelly, DA. Etiology, outcome and prognostic indicators of childhood fulminant hepatic failure in the United kingdom. J Pediatr Gastroenterol Nutr 2005;40:575–81.Google Scholar
Durand, P, Debray, D, Mandel, R, et al. Acute liver failure in infancy: a 14-year experience of a pediatric liver transplantation center. J Pediatr 2001;139:871–6.Google Scholar
Parikh, S, Karaa, A, Goldstein, A, et al. Solid organ transplantation in primary mitochondrial disease: proceed with caution. Mol Genet Metab 2016;118:178–84.Google Scholar
Pearson, HA, Lobel, JS, Kocoshis, SA, et al. A new syndrome of refractory sideroblastic anemia with vacuolization of marrow precursors and exocrine pancreatic dysfunction. J Pediatr 1979;95:976–84.Google Scholar
Holt, IJ, Harding, AE, Morgan-Hughes, JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988;331:717–19.Google Scholar
Broomfield, A, Sweeney, MG, Woodward, CE, et al. Paediatric single mitochondrial DNA deletion disorders: an overlapping spectrum of disease. J Inherit Metab Dis 2015;38:445–57.Google Scholar
Grady, JP, Campbell, G, Ratnaike, T, et al. Disease progression in patients with single, large-scale mitochondrial DNA deletions. Brain 2014;137:323–34.Google Scholar
Saneto, RP, Cohen, BH, Copeland, WC, Naviaux, RK. Alpers-Huttenlocher syndrome. Pediatr Neurol 2013;48:167–78.Google Scholar
Nguyen, KV, Sharief, FS, Chan, SSL, Copeland, WC, Naviaux, RK. Molecular diagnosis of Alpers syndrome. J Hepatol 2006;45:108–16.Google Scholar
El-Hattab, AW, Wang, J, Dai, H, et al. MPV17-related mitochondrial DNA maintenance defect: new cases and review of clinical, biochemical, and molecular aspects. Hum Mutat 2018;39:461–70.Google Scholar
Dalla Rosa, I, Cámara, Y, Durigon, R, et al. MPV17 loss causes deoxynucleotide insufficiency and slow DNA replication in mitochondria. PLoS Genet 2016;12:e1005779.Google Scholar
Garcia-Diaz, B, Garone, C, Barca, E, et al. Deoxynucleoside stress exacerbates the phenotype of a mouse model of mitochondrial neurogastrointestinal encephalopathy. Brain 2014;137:1337–49.Google Scholar
Hirano, M, Silvestri, G, Blake, DM, et al. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): clinical, biochemical, and genetic features of an autosomal recessive mitochondrial disorder. Neurology 1994;44:721–7.Google Scholar
Garone, C, Tadesse, S, Hirano, M. Clinical and genetic spectrum of mitochondrial neurogastrointestinal encephalomyopathy. Brain 2011;134:3326–32.Google Scholar
Yadak, R, Breur, M, Bugiani, M. Gastrointestinal dysmotility in MNGIE: from thymidine phosphorylase enzyme deficiency to altered interstitial cells of Cajal. Orphanet J Rare Dis 2019;14:33.Google Scholar
Finkenstedt, A, Schranz, M, Bösch, S, et al. MNGIE syndrome: liver cirrhosis should be ruled out prior to bone marrow transplantation. JIMD Rep 2013;10:41–4.Google Scholar
Halter, JP, Michael, W, Schüpbach, M, et al. Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Brain 2015;138:2847–58.Google Scholar
D’Angelo, R, Rinaldi, R, Pironi, L, et al. Liver transplant reverses biochemical imbalance in mitochondrial neurogastrointestinal encephalomyopathy. Mitochondrion 2017;34:101–2.Google Scholar
De Giorgio, R, Pironi, L, Rinaldi, R, et al. Liver transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Ann Neurol 2016;80:448–55.Google Scholar
Boschetti, E, D’Alessandro, R, Bianco, F, et al. Liver as a source for thymidine phosphorylase replacement in mitochondrial neurogastrointestinal encephalomyopathy. PLoS One 2014;9:e96692.Google Scholar
Al-Hussaini, A, Faqeih, E, El-Hattab, AW, et al. Clinical and molecular characteristics of mitochondrial DNA depletion syndrome associated with neonatal cholestasis and liver failure [online]. J Peds 2014;553–9.e2. Accessed at: http://dx.doi.org/10.1016/j.jpeds.2013.10.082Google Scholar
Dimmock, DP, Zhang, Q, Dionisi-Vici, C, et al. Clinical and molecular features of mitochondrial DNA depletion due to mutations in deoxyguanosine kinase. Hum Mutat 2008;29:330–1.Google Scholar
Freisinger, P, Fütterer, N, Lankes, E, et al. Hepatocerebral mitochondrial DNA depletion syndrome caused by deoxyguanosine kinase (DGUOK) mutations. Arch Neurol 2006;63:1129–34.Google Scholar
Vilarinho, S, Sari, S, Yilmaz, G, et al. Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension. Hepatology 2016;63:1977–86.Google Scholar
Grabhorn, E, Tsiakas, K, Herden, U, et al. Long-term outcomes after liver transplantation for deoxyguanosine kinase deficiency: a single-center experience and a review of the literature. Liver Transpl 2014;20:464–72.Google Scholar
Munro, B, Horvath, R, Müller, JS. Nucleoside supplementation modulates mitochondrial DNA copy number in the dguok -/- zebrafish. Hum Mol Genet 2019;28:796803.Google Scholar
Sukhudyan, B, Gevorgyan, A, Sarkissian, A, Boltshauser, E. Expanding phenotype of mitochondrial depletion syndrome in association with TWNK mutations. Eur J Paediatr Neurol 2019;23:537–40.Google Scholar
Hakonen, AH, Isohanni, P, Paetau, A, Herva, R, Suomalainen, A, Lönnqvist, T. Recessive Twinkle mutations in early onset encephalopathy with mtDNA depletion. Brain 2007;130:3032–40.Google Scholar
Carrozzo, R, Verrigni, D, Rasmussen, M, et al. Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1: phenotype and genotype correlations in 71 patients. J Inherit Metab Dis 2016;39:243–52.Google Scholar
Van Hove, JLK, Saenz, MS, Thomas, JA, et al. Succinyl-CoA ligase deficiency: a mitochondrial hepatoencephalomyopathy. Pediatr Res 2010;68:159–64.Google Scholar
Gaignard, P, Gonzales, E, Ackermann, O, et al. Mitochondrial infantile liver disease due to TRMU gene mutations: three new cases. JIMD Rep 2013;11:117–23.Google Scholar
Zeharia, A, Shaag, A, Pappo, O, et al. Acute infantile liver failure due to mutations in the TRMU gene. Am J Hum Genet 2009;85:401–7.Google Scholar
Grover, Z, Lewindon, P, Clousten, A, Shaag, A, Elpeleg, O, Coman, D. Hepatic copper accumulation: a novel feature in transient infantile liver failure due to TRMU mutations? JIMD Rep 2015;21:109–13.Google Scholar
Soler-Alfonso, C, Pillai, N, Cooney, E, Mysore, KR, Boyer, S, Scaglia, F. L-Cysteine supplementation prevents liver transplantation in a patient with TRMU deficiency. Mol Genet Metab Rep 2019;19:100453.Google Scholar
Maas, RR, Iwanicka‐Pronicka, K, Kalkan Ucar, S, et al. Progressive deafness–dystonia due to SERAC1 mutations: a study of 67 cases. Ann Neurol 2017;82:1004–15.Google Scholar
Sarig, O, Goldsher, D, Nousbeck, J, et al. Infantile mitochondrial hepatopathy is a cardinal feature of MEGDEL syndrome (3-methylglutaconic aciduria type IV with sensorineural deafness, encephalopathy and Leigh-like syndrome) caused by novel mutations in SERAC1. Am J Med Genet A 2013;161:2204–15.Google Scholar
Gödiker, J, Grüneberg, M, DuChesne, I, et al. QIL1-dependent assembly of MICOS complex–lethal mutation in C19ORF70 resulting in liver disease and severe neurological retardation. J Hum Genet 2018;63:707–16.Google Scholar
Russell, BE, Whaley, KG, Bove, KE, et al. Expanding and underscoring the hepato‐encephalopathic phenotype of QIL1 /MIC13. Hepatology 2019;70:1066–70.Google Scholar
Ravn, K, Schönewolf-Greulich, B, Hansen, RM, et al. Neonatal mitochondrial hepatoencephalopathy caused by novel GFM1 mutations. Mol Genet Metab Rep 2015;3:510.Google Scholar
Baker, RA, Priestley, JRC, Wilstermann, AM, Reese, KJ, Mark, PR. Clinical spectrum of BCS1L mitopathies and their underlying structural relationships. Am J Med Genet A 2019;179:373–80.Google Scholar
Almannai, M, Wang, J, Dai, H, et al. FARS2 deficiency; new cases, review of clinical, biochemical, and molecular spectra, and variants interpretation based on structural, functional, and evolutionary significance. Mol Genet Metab 2018;125:281–91.Google Scholar
Vantroys, E, Smet, J, Vanlander, AV, et al. Severe hepatopathy and neurological deterioration after start of valproate treatment in a 6-year-old child with mitochondrial tryptophanyl-tRNA synthetase deficiency. Orphanet J Rare Dis 2018;13:80.Google Scholar
Vedrenne, V, Galmiche, L, Chretien, D, de Lonlay, P, Munnich, A, Rötig, A. Mutation in the mitochondrial translation elongation factor EFTs results in severe infantile liver failure. J Hepatol 2012;56:294–7.Google Scholar
Di Nottia, M, Montanari, A, Verrigni, D, et al. Novel mutation in mitochondrial elongation factor EF-Tu associated to dysplastic leukoencephalopathy and defective mitochondrial DNA translation. Biochim Biophys Acta Mol Basis Dis 2017;1863:961–7.Google Scholar
Valnot, I, Osmond, S, Gigarel, N, et al. Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am J Hum Genet 2000;67:1104–9.Google Scholar
Leslie, N, Wang, X, Peng, Y, et al. Neonatal multiorgan failure due to ACAD9 mutation and complex I deficiency with mitochondrial hyperplasia in liver, cardiac myocytes, skeletal muscle, and renal tubules. Hum Pathol 2016;49:2732.Google Scholar
Partin, JC, Schubert, WK, Partin, JS. Mitochondrial ultrastructure in Reye’s syndrome (encephalopathy and fatty degeneration of the viscera). N Engl J Med 1971;285:1339–43.Google Scholar
Casteels-Van Daele, M, Van Geet, C, Wouters, C, Eggermont, E. Reye syndrome revisited: a descriptive term covering a group of heterogeneous disorders. Eur J Pediatr 2000;159:641–8.Google Scholar
Sternlieb, I. Mitochondrial and fatty changes in hepatocytes of patients with Wilson’s disease. Gastroenterology 1968;55:354–67.Google Scholar
Sternlieb, I, Feldmann, G. Effects of anticopper therapy on hepatocellular mitochondria in patients with Wilson’s disease: an ultrastructural and stereological study. Gastroenterology [online serial]. Epub 1976. Accessed at: www.gastrojournal.org/article/S0016-5085(76)80455–6/abstractGoogle Scholar
Sokol, RJ, Twedt, D, McKim, JM Jr, et al. Oxidant injury to hepatic mitochondria in patients with Wilson’s disease and Bedlington terriers with copper toxicosis. Gastroenterology 1994;107:1788–98.Google Scholar
Mansouri, A, Gaou, I, Fromenty, B, et al. Premature oxidative aging of hepatic mitochondrial DNA in Wilson’s disease. Gastroenterology 1997;113:599605.Google Scholar
Dara, L, Johnson, H, Kaplowitz, N. (2015). The central role of mitochondria in drug-induced liver injury. In Mitochondria in Liver Disease (pp. 220–37). Boca Raton, FL: CRC Press.Google Scholar
Manzo-Avalos, S, Saavedra-Molina, A. Cellular and mitochondrial effects of alcohol consumption. Int J Environ Res Public Health 2010;7:4281–304.Google Scholar
Fromenty, B, Grimbert, S, Mansouri, A, et al. Hepatic mitochondrial DNA deletion in alcoholics: association with microvesicular steatosis. Gastroenterology 1995;108:193200.Google Scholar
McKenzie, R, Fried, MW, Sallie, R, et al. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N Engl J Med 1995;333:1099–105.Google Scholar
Apostolova, N, Blas-García, A, Esplugues, JV. Mitochondrial interference by anti-HIV drugs: mechanisms beyond Pol-γ inhibition. Trends Pharmacol Sci 2011;32:715–25.CrossRefGoogle ScholarPubMed
Sokol, RJ, Winklhofer-Roob, BM, Devereaux, MW, McKim, JM Jr. Generation of hydroperoxides in isolated rat hepatocytes and hepatic mitochondria exposed to hydrophobic bile acids. Gastroenterology 1995;109:1249–56.Google Scholar
Serviddio, G, Sastre, J, Bellanti, F, Viña, J, Vendemiale, G, Altomare, E. Mitochondrial involvement in non-alcoholic steatohepatitis. Mol Aspects Med 2008;29:2235.Google Scholar
Munnich, A, Rötig, A, Chretien, D, et al. Clinical presentation of mitochondrial disorders in childhood. J Inherit Metab Dis 1996;19:521–7.Google Scholar
Molleston, JP, Sokol, RJ, Karnsakul, W, et al. Evaluation of the child with suspected mitochondrial liver disease. J Pediatr Gastroenterol Nutr 2013;57:269–76.Google Scholar
Lee, ES, Kim, SH, Kim, HJ, Kim, KH, Lee, BS, Ku, BJ. Growth differentiation factor 15 predicts chronic liver disease severity. Gut Liver 2017;11:276–82.Google Scholar
de Beaurepaire, I, Grévent, D, Rio, M, et al. High predictive value of brain MRI imaging in primary mitochondrial respiratory chain deficiency. J Med Genet 2018;55:378–83.Google Scholar
Parikh, S, Karaa, A, Goldstein, A, et al. Diagnosis of “possible” mitochondrial disease: an existential crisis. J Med Genet 2019;56:123–30.Google Scholar
Taylor, RW, Pyle, A, Griffin, H, et al. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 2014;312:6877.Google Scholar
Wortmann, SB, Koolen, DA, Smeitink, JA, van den Heuvel, L, Rodenburg, RJ. Whole exome sequencing of suspected mitochondrial patients in clinical practice. J Inherit Metab Dis 2015;38:437–43.Google Scholar
Sanford, EF, Clark, MM, Farnaes, L, et al. Rapid whole genome sequencing has clinical utility in children in the PICU. Pediatr Crit Care Med 2019;20:1007–20.Google Scholar
Gnaiger, E. (2008). Polarographic oxygen sensors, the oxygraph and high-resolution respirometry to assess mitochondrial function. In Dykens, JA and Will, Y (Eds.), Drug-Induced Mitochondrial Dysfunction (pp. 327–52). Hoboken: John Wiley & Sons.Google Scholar
Haas, RH, Parikh, S, Falk, MJ, et al. The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab 2008;94:1637.Google Scholar
Pfeffer, G, Majamaa, K, Turnbull, DM, Thorburn, D, Chinnery, PF. Treatment for mitochondrial disorders. Cochrane Database Syst Rev Epub April 18, 2012:CD004426.Google Scholar
Parikh, S, Goldstein, A, Karaa, A, et al. Patient care standards for primary mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med [online serial]. Epub July 27, 2017. Accessed at: http://dx.doi.org/10.1038/gim.2017.107Google Scholar
Montini, G, Malaventura, C, Salviati, L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med 2008;358:2849–50.Google Scholar
Ohsawa, Y, Hagiwara, H, Nishimatsu, S-I, et al. Taurine supplementation for prevention of stroke-like episodes in MELAS: a multicentre, open-label, 52-week phase III trial. J Neurol Neurosurg Psychiatry 2019;90:529–36.Google Scholar
Quijada-Fraile, P, O’Callaghan, M, Martín-Hernández, E, et al. Follow-up of folinic acid supplementation for patients with cerebral folate deficiency and Kearns-Sayre syndrome. Orphanet J Rare Dis 2014;9:217.Google Scholar
Ahola, S, Auranen, M, Isohanni, P, et al. Modified Atkins diet induces subacute selective ragged-red-fiber lysis in mitochondrial myopathy patients. EMBO Mol Med 2016;8:1234–47.Google Scholar
Yamada, Y, Harashima, H. Delivery of bioactive molecules to the mitochondrial genome using a membrane-fusing, liposome-based carrier, DF-MITO-Porter. Biomaterials 2012;33:1589–95.Google Scholar
Zhang, J, Liu, H, Luo, S, et al. Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed 2017;34:361–8.Google Scholar
Steffann, J, Gigarel, N, Corcos, J, et al. Stability of the m. 8993T→ G mtDNA mutation load during human embryofetal development has implications for the feasibility of prenatal diagnosis in NARP syndrome. J Med Genet 2007;44:664–9.Google Scholar
Ryan, E, King, MD, Rustin, P, et al. Mitochondrial cytopathies, phenotypic heterogeneity and a high incidence. Ir Med J 2006;99:262–4.Google ScholarPubMed
Uusimaa, J, Remes, AM, Rantala, H, et al. Childhood encephalopathies and myopathies: a prospective study in a defined population to assess the frequency of mitochondrial disorders. Pediatrics. Am Acad Pediatrics 2000;105:598603.Google Scholar
Castro-Gago, M, Blanco-Barca, MO, Campos-González, Y, Arenas-Barbero, J, Pintos-Martínez, E, Eirís-Puñal, J. Epidemiology of pediatric mitochondrial respiratory chain disorders in northwest Spain. Pediatr Neurol 2006;34:204–11.Google Scholar
Diogo, L, Grazina, M, Garcia, P, et al. Pediatric mitochondrial respiratory chain disorders in the Centro region of Portugal. Pediatr Neurol 2009;40:351–6.Google Scholar
Darin, N, Oldfors, A, Moslemi, AR, Holme, E, Tulinius, M. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical, and DNA abnormalities. Ann Neurol 2001;49:377–83.Google Scholar

References

Younossi, ZM, et al. Global epidemiology of nonalcoholic fatty liver disease: meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016;64(1):7384.Google Scholar
Popkin, BM, Adair, LS, Ng, SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 2012;70(1):321.Google Scholar
Semple, RK, et al. Genetic syndromes of severe insulin resistance. Endocr Rev 2011;32(4):498514.Google Scholar
Matteoni, CA, et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 1999;116(6):1413–19.Google Scholar
Adams, LA, et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 2005;129(1):113–21.Google Scholar
Goldberg, D, et al. Changes in the prevalence of hepatitis C virus infection, nonalcoholic steatohepatitis, and alcoholic liver disease among patients with cirrhosis or liver failure on the waitlist for liver transplantation. Gastroenterology 2017;152(5):1090–9 e1.Google Scholar
Younossi, ZM, et al. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: implications for liver transplantation. Transplantation 2019;103(1):22–7.Google Scholar
Shingina, A, et al. Future trends in demand for liver transplant: birth cohort effects among patients with NASH and HCC. Transplantation 2019;103(1):140–8.Google Scholar
Alkhouri, N, et al. Liver transplantation for nonalcoholic steatohepatitis in young patients. Transpl Int 2016;29(4):418–24.Google Scholar
Schwimmer, JB, et al. Prevalence of fatty liver in children and adolescents. Pediatrics 2006;118(4):1388–93.Google Scholar
Browning, JD, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004;40(6):1387–95.CrossRefGoogle Scholar
Goyal, NP, Schwimmer, JB. The genetics of pediatric nonalcoholic fatty liver disease. Clin Liver Dis 2018;22(1):5971.Google Scholar
Anderson, EL, et al. The prevalence of non-alcoholic fatty liver disease in children and adolescents: a systematic review and meta-analysis. PLoS One 2015;10(10):e0140908.Google Scholar
Vos, MB, et al. NASPGHAN Clinical Practice Guideline for the Diagnosis and Treatment of Nonalcoholic Fatty Liver Disease in Children: Recommendations from the Expert Committee on NAFLD (ECON) and the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN). J Pediatr Gastroenterol Nutr 2017;64(2):319–34.Google Scholar
Schwimmer, JB, et al. SAFETY study: alanine aminotransferase cutoff values are set too high for reliable detection of pediatric chronic liver disease. Gastroenterology 2010;138(4):1357–64, 1364 e1-2.Google Scholar
Adeli, K. Closing the gaps in pediatric reference intervals: an update on the CALIPER project. Clin Biochem 2014;47(9):737–9.Google Scholar
Yu, EL, et al. Prevalence of nonalcoholic fatty liver disease in children with obesity. J Pediatr 2019;207:6470.Google Scholar
Xanthakos, SA, et al. High prevalence of nonalcoholic fatty liver disease in adolescents undergoing bariatric surgery. Gastroenterology 2015;149(3):623–34 e8.Google Scholar
Manco, M, et al. Metabolic syndrome and liver histology in paediatric non-alcoholic steatohepatitis. Int J Obes 2008;32(2):381–7.Google Scholar
Manco, M, et al. Waist circumference correlates with liver fibrosis in children with non-alcoholic steatohepatitis. Gut 2008;57(9):1283–7.Google Scholar
Newton, KP, et al. Prevalence of prediabetes and type 2 diabetes in children with nonalcoholic fatty liver disease. JAMA Pediatr 2016;170(10):e161971.Google Scholar
Bhala, N, et al. The natural history of nonalcoholic fatty liver disease with advanced fibrosis or cirrhosis: an international collaborative study. Hepatology 2011;54(4):1208–16.Google Scholar
Oliveira, S, et al. Incidental inflammatory adenoma with beta-catenin activation in the setting of paediatric NASH. Pediatr Obes 2018;13(1):70–3.Google Scholar
Kohli, R, et al. Rapid progression of NASH in childhood. J Pediatr Gastroenterol Nutr 2010;50(4):453–6.Google Scholar
Dunn, W, et al. Suspected nonalcoholic fatty liver disease and mortality risk in a population-based cohort study. Am J Gastroenterol 2008;103(9):2263–71.Google Scholar
Ruhl, CE, Everhart, JE. Determinants of the association of overweight with elevated serum alanine aminotransferase activity in the United States. Gastroenterology 2003;124(1):71–9.Google Scholar
Pacifico, L, et al. Functional and morphological vascular changes in pediatric nonalcoholic fatty liver disease. Hepatology 2010;52(5):1643–51.Google Scholar
Caserta, CA, et al. Cardiovascular risk factors, nonalcoholic fatty liver disease, and carotid artery intima-media thickness in an adolescent population in southern Italy. Am J Epidemiol 2010;171(11):1195–202.Google Scholar
Puri, P, et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology 2009;50(6):1827–38.Google Scholar
Kohli, R, et al. High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology 2010;52(3):934–44.Google Scholar
Nobili, V, et al. Severity of liver injury and atherogenic lipid profile in children with nonalcoholic fatty liver disease. Pediatr Res 2010;67(6):665–70.Google Scholar
Sanyal, AJ, et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 2001;120(5):1183–92.Google Scholar
Feldstein, AE, et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 2003;125(2):437–43.Google Scholar
Kohli, R, et al. Mitochondrial reactive oxygen species signal hepatocyte steatosis by regulating the phosphatidylinositol 3-kinase cell survival pathway. J Biol Chem 2007;282(29):21327–36.Google Scholar
Sookoian, S, Pirola, CJ. Meta-analysis of the influence of I148 M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 2011;53(6):1883–94.Google Scholar
Santoro, N, et al. A common variant in the patatin-like phospholipase 3 gene (PNPLA3) is associated with fatty liver disease in obese children and adolescents. Hepatology 2010;52(4):1281–90.Google Scholar
Valenti, L, Alisi, A, Nobili, V. I148M PNPLA3 variant and progressive liver disease: a new paradigm in hepatology. Hepatology 2012;56(2):1883–9.Google Scholar
Petersen, KF, et al. Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N Engl J Med 2010;362(12):1082–9.Google Scholar
Al-Serri, A, et al. The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies. J Hepatol 2012;56(2):448–54.Google Scholar
Lin, YC, et al. Variants in the UGT1A1 gene and the risk of pediatric nonalcoholic fatty liver disease. Pediatrics 2009;124(6):e1221–7.Google Scholar
Wattacheril, J, et al. Genome-wide associations related to hepatic histology in nonalcoholic fatty liver disease in Hispanic boys. J Pediatr 2017;190:100–7 e2.Google Scholar
Abdelmalek, MF, et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 2010;51(6):1961–71.Google Scholar
Welsh, JA, et al. Caloric sweetener consumption and dyslipidemia among US adults. JAMA 2010;303(15):1490–7.Google Scholar
Schwimmer, JB, et al. Effect of a low free sugar diet vs usual diet on nonalcoholic fatty liver disease in adolescent boys: a randomized clinical trial. JAMA 2019;321(3):256–65.Google Scholar
Schwimmer, JB, et al. Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease. Gastroenterology 2019;157(4):1109–22.Google Scholar
Frediani, JK, et al. Arsenic exposure and risk of nonalcoholic fatty liver disease (NAFLD) among U.S. adolescents and adults: an association modified by race/ethnicity, NHANES 2005–2014. Environ Health 2018;17(1):6.Google Scholar
Jin, R, et al. Perfluoroalkyl substances and severity of nonalcoholic fatty liver in children: an untargeted metabolomics approach. Environ Int 2020;134:105220.Google Scholar
Feldstein, AE, et al. The natural history of non-alcoholic fatty liver disease in children: a follow-up study for up to 20 years. Gut 2009;58(11):1538–44.Google Scholar
Barlow, SE. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics 2007;120(Suppl 4):S164–92.Google Scholar
Lee, TH, et al. Serum aminotransferase activity and mortality risk in a United States community. Hepatology 2008;47(3):880–7.Google Scholar
Nobili, V, et al. The pediatric NAFLD fibrosis index: a predictor of liver fibrosis in children with non-alcoholic fatty liver disease. BMC Med 2009;7:21.Google Scholar
Patton, HM, et al. Clinical correlates of histopathology in pediatric nonalcoholic steatohepatitis. Gastroenterology 2008;135(6):1961–71 e2.Google Scholar
Carter-Kent, C, et al. Nonalcoholic steatohepatitis in children: a multicenter clinicopathological study. Hepatology 2009;50(4):1113–20.Google Scholar
Wieckowska, A, et al. In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease. Hepatology 2006;44(1):2733.Google Scholar
Vuppalanchi, R, et al. Relationship between changes in serum levels of keratin 18 and changes in liver histology in children and adults with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2014;12(12):2121–30 e1–2.Google Scholar
Alkhouri, N, et al. A combination of the pediatric NAFLD fibrosis index and enhanced liver fibrosis test identifies children with fibrosis. Clin Gastroenterol Hepatol 2011;9(2):150–5.Google Scholar
Jackson, JA, et al. Performance of fibrosis prediction scores in paediatric non-alcoholic fatty liver disease. J Paediatr Child Health 2018;54(2):172–6.Google Scholar
Nobili, V, et al. Accuracy and reproducibility of transient elastography for the diagnosis of fibrosis in pediatric nonalcoholic steatohepatitis. Hepatology 2008;48(2):442–8.Google Scholar
Schwimmer, JB, et al. Magnetic resonance elastography measured shear stiffness as a biomarker of fibrosis in pediatric nonalcoholic fatty liver disease. Hepatology 2017;66(5):1474–85.Google Scholar
Sawh, MC, et al. Normal range for MR elastography measured liver stiffness in children without liver disease. J Magn Reson Imaging 2020;51(3):919–27.Google Scholar
Dillman, JR, et al. Quantitative liver MRI-biopsy correlation in pediatric and young adult patients with nonalcoholic fatty liver disease: can one be used to predict the other? AJR Am J Roentgenol 2018;210(1):166–74.Google Scholar
Mouzaki, M, et al. Assessment of nonalcoholic fatty liver disease progression in children using magnetic resonance imaging. J Pediatr 2018;201:8692.Google Scholar
Loomba, R, et al. Placebo in nonalcoholic steatohepatitis: insight into natural history and implications for future clinical trials. Clin Gastroenterol Hepatol 2008;6(11):1243–8.Google Scholar
Larson, SP, et al. Histopathologic variability between the right and left lobes of the liver in morbidly obese patients undergoing Roux-en-Y bypass. Clin Gastroenterol Hepatol 2007;5(11):1329–32.Google Scholar
Vos, MB, et al. Response to the letters regarding the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition NAFLD Guidelines. J Pediatr Gastroenterol Nutr 2017;65(5):e115e116.Google Scholar
West, J, Card, TR. Reduced mortality rates following elective percutaneous liver biopsies. Gastroenterology 2010;139(4):1230–7.Google Scholar
Harwood, J, et al. Safety of blind percutaneous liver biopsy in obese children: a retrospective analysis. J Clin Gastroenterol 2010;44(10):e253–5.Google Scholar
Brunt, EM, et al. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 1999;94(9):2467–74.Google Scholar
Kleiner, DE, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005;41(6):1313–21.Google Scholar
Musso, G, et al. A meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver disease. Hepatology 2010;52(1):79104.Google Scholar
Nobili, V, et al. NAFLD in children: a prospective clinical-pathological study and effect of lifestyle advice. Hepatology 2006;44(2):458–65.Google Scholar
Devore, S, et al. A multidisciplinary clinical program is effective in stabilizing BMI and reducing transaminase levels in pediatric patients with NAFLD. J Pediatr Gastroenterol Nutr 2013;57(1):119–23.Google Scholar
Nobili, V, et al. Lifestyle intervention and antioxidant therapy in children with nonalcoholic fatty liver disease: a randomized, controlled trial. Hepatology 2008;48(1):119–28.Google Scholar
Lavine, JE, et al. Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial. JAMA 2011;305(16):1659–68.Google Scholar
Sanyal, AJ, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010;362(18):1675–85.Google Scholar
Klein, EA, et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2011;306(14):1549–56.Google Scholar
Schwimmer, JB, et al. In children with nonalcoholic fatty liver disease, cysteamine bitartrate delayed release improves liver enzymes but does not reduce disease activity scores. Gastroenterology 2016;151(6):1141–54 e9.Google Scholar
Inge, TH, Xanthakos, SA. Reversal of nonalcoholic steatohepatitis in adolescents after metabolic surgery. J Pediatr 2017;180:67.Google Scholar
Chavez-Tapia, NC, et al. Bariatric surgery for non-alcoholic steatohepatitis in obese patients. Cochrane Database Syst Rev 2010;1:CD007340.Google Scholar
Manco, M, et al. The benefit of sleeve gastrectomy in obese adolescents on nonalcoholic steatohepatitis and hepatic fibrosis. J Pediatr 2017;180:31–7 e2.Google Scholar
Doycheva, I, et al. Nonalcoholic steatohepatitis is the most rapidly increasing indication for liver transplantation in young adults in the United States. J Clin Gastroenterol 2018;52(4):339–46.Google Scholar

References

Rhodin, J. Correlation of ultrastructural organization and function in normal and experimentally changed proximal tubule cells of the mouse kidney. Thesis, Karolinska Institutet, 1954.Google Scholar
De Duve, C, Baudhuin, P. Peroxisomes (microbodies and related particles). Physiol. Rev 1966;46(2):323–57. doi: 10.1152/physrev.1966.46.2.323Google Scholar
Gabaldón, T. Evolution of the peroxisomal proteome. Subcell Biochem 2018;89:221233. doi: 10.1007/978-981-13-2233-4_9Google Scholar
Ma, C, Agrawal, G, Subramani, S. Peroxisome assembly: matrix and membrane protein biogenesis. J Cell Biol 2011;193(1):716. doi: 10.1083/jcb.201010022Google Scholar
Argyriou, C, D’Agostino, MD, Braverman, N. Peroxisome biogenesis disorders. Transl Sci Rare Dis 2016;1(2):111–44. doi: 10.3233/TRD-160003Google Scholar
Sugiura, A, Mattie, S, Prudent, J, McBride, HM. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature 2017;542(7640):251–4. doi: 10.1038/nature21375Google Scholar
Schrader, M, Costello, JL, Godinho, LF, Azadi, AS, Islinger, M. Proliferation and fission of peroxisomes – An update. Biochim Biophys Acta 2016;1863(5):971–83. doi: 10.1016/j.bbamcr.2015.09.024Google Scholar
Kunze, M. The type-2 peroxisomal targeting signal. Biochim Biophys Acta Mol Cell Res 2020;1867(2):118609. doi: 10.1016/j.bbamcr.2019.118609Google Scholar
Kalel, VC, Erdmann, R. Unraveling of the structure and function of peroxisomal protein import machineries. Subcell Biochem 2018;89:299321. doi: 10.1007/978-981-13-2233-4_13Google Scholar
Pedrosa, AG, Francisco, T, Ferreira, MJ, Rodrigues, TA, Barros-Barbosa, A, Azevedo, JE. A mechanistic perspective on PEX1 and PEX6, two AAA+ proteins of the peroxisomal protein import machinery. Int J Mol Sci 2019;20(21). doi: 10.3390/ijms20215246Google Scholar
Nazarko, TY. Pexophagy is responsible for 65% of cases of peroxisome biogenesis disorders. Autophagy 2017;13(5):991–4. doi: 10.1080/15548627.2017.1291480Google Scholar
Lazarow, PB, De Duve, C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci USA 1976;73(6):2043–6. doi: 10.1073/pnas.73.6.2043Google Scholar
Kemp, S, Theodoulou, FL, Wanders, RJA. Mammalian peroxisomal ABC transporters: from endogenous substrates to pathology and clinical significance. Br J Pharmacol 2011;164(7):1753–66. doi: 10.1111/j.1476-5381.2011.01435.xGoogle Scholar
Ferdinandusse, S, et al. ACBD5 deficiency causes a defect in peroxisomal very long-chain fatty acid metabolism.J Med Genet 2017;54(5):330–7. doi: 10.1136/jmedgenet-2016-104132Google Scholar
Kemp, S, et al. Gene redundancy and pharmacological gene therapy: implications for X-linked adrenoleukodystrophy. Nat Med 1998;4(11):1261–8. doi: 10.1038/3242Google Scholar
Wanders, RJA. Metabolic functions of peroxisomes in health and disease. Biochimie 2014;98:3644. doi: 10.1016/j.biochi.2013.08.022Google Scholar
Houten, SM, et al. Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids. J Lipid Res 2012;53(7):1296–303. doi: 10.1194/jlr.M024463Google Scholar
Korman, SH, Mandel, H, Gutman, A. Characteristic urine organic acid profile in peroxisomal biogenesis disorders. J Inherit Metab Dis 2000;23(4):425–8. doi: 10.1023/a:1005624523611Google Scholar
Wanders, RJA, Ferdinandusse, S, Brites, P, Kemp, S. Peroxisomes, lipid metabolism and lipotoxicity. Biochim Biophys Acta 2010;1801(3):272–80. doi: 10.1016/j.bbalip.2010.01.001Google Scholar
Steinberg, SJ, Dodt, G, Raymond, GV, Braverman, NE, Moser, AB, Moser, HW. Peroxisome biogenesis disorders. Biochim Biophys Acta 2006;1763(12):1733–48. doi: 10.1016/j.bbamcr.2006.09.010Google Scholar
Ferdinandusse, S, et al. Mutations in the gene encoding peroxisomal sterol carrier protein X (SCPx) cause leukencephalopathy with dystonia and motor neuropathy.Am J Hum Genet 2006;78(6):1046–52. doi: 10.1086/503921Google Scholar
Moore, SA, Hurt, E, Yoder, E, Sprecher, H, Spector, AA. Docosahexaenoic acid synthesis in human skin fibroblasts involves peroxisomal retroconversion of tetracosahexaenoic acid. J Lipid Res 1995;36(11):2433–43.Google Scholar
Wanders, RJA, Komen, J, Ferdinandusse, S. Phytanic acid metabolism in health and disease. Biochim Biophys Acta 2011;1811(9):498507. doi: 10.1016/j.bbalip.2011.06.006Google Scholar
Ferdinandusse, S, et al. A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum Mol Genet 2015;24(2):361–70. doi: 10.1093/hmg/ddu448Google Scholar
Watkins, PA. Very-long-chain acyl-CoA synthetases. J Biol Chem 2008;283(4):1773–7. doi: 10.1074/jbc.R700037200Google Scholar
de Aguiar Vallim, TQ, Tarling, EJ, Edwards, PA. Pleiotropic roles of bile acids in metabolism. Cell Metab 2013;17(5):657–69. doi: 10.1016/j.cmet.2013.03.013Google Scholar
Kovacs, WJ, et al. Localization of the pre-squalene segment of the isoprenoid biosynthetic pathway in mammalian peroxisomes. Histochem Cell Biol 2007;127(3):273–90. doi: 10.1007/s00418-006-0254-6Google Scholar
Weinhofer, I, Kunze, M, Stangl, H, Porter, FD, Berger, J. Peroxisomal cholesterol biosynthesis and Smith-Lemli-Opitz syndrome. Biochem Biophys Res Commun 2006;345(1):205–9. doi: 10.1016/j.bbrc.2006.04.078Google Scholar
Hogenboom, S, Tuyp, JJM, Espeel, M, Koster, J, Wanders, RJA, Waterham, HR. Mevalonate kinase is a cytosolic enzyme in humans. J Cell Sci 2004;117(4):631–9. doi: 10.1242/jcs.00910Google Scholar
Hogenboom, S, Tuyp, JJM, Espeel, M, Koster, J, Wanders, RJA, Waterham, HR. Phosphomevalonate kinase is a cytosolic protein in humans. J Lipid Res 2004;45(4):697705. doi: 10.1194/jlr.M300373-JLR200Google Scholar
Hogenboom, S, Tuyp, JJM, Espeel, M, Koster, J, Wanders, RJA, Waterham, HR. Human mevalonate pyrophosphate decarboxylase is localized in the cytosol. Mol Genet Metab 2004;81(3):216–24. doi: 10.1016/j.ymgme.2003.12.001Google Scholar
Lloyd, MD, Darley, DJ, Wierzbicki, AS, Threadgill, MD. Alpha-methylacyl-CoA racemase: an “obscure” metabolic enzyme takes centre stage. FEBS J 2008;275(6):1089–102. doi: 10.1111/j.1742-4658.2008.06290.xGoogle Scholar
Van Veldhoven, PP, Croes, K, Asselberghs, S, Herdewijn, P, Mannaerts, GP. Peroxisomal beta-oxidation of 2-methyl-branched acyl-CoA esters: stereospecific recognition of the 2S-methyl compounds by trihydroxycoprostanoyl-CoA oxidase and pristanoyl-CoA oxidase. FEBS Lett 1996;388(1):80–4. doi: 10.1016/0014-5793(96)00508-xGoogle Scholar
Horrocks, LA, Sharma, M. (1982). Plasmalogens and O-alkyl glycerophospholipids in Phospholipids. In Nawthorne, JN, Ansell, GB, (Eds.), Phospholipids. New Comprehensive Biochemistry (pp. 5193). Amsterdam: Elsevier Biomedical Press.Google Scholar
Honsho, M, Fujiki, Y. Plasmalogen homeostasis – regulation of plasmalogen biosynthesis and its physiological consequence in mammals. FEBS Lett 2017;591(18):2720–9. doi: 10.1002/1873-3468.12743Google Scholar
Mannaerts, GP, Van Veldhoven, PP, Casteels, M. Peroxisomal lipid degradation via beta- and alpha-oxidation in mammals. Cell Biochem Biophys 2000;32:7387. doi:10.1385/cbb:32:1-3:73Google Scholar
Williams, EL, et al. Primary hyperoxaluria type 1: update and additional mutation analysis of the AGXT gene. Hum Mutat 2009;30(6):910–17. doi: 10.1002/humu.21021Google Scholar
van Woerden, CS, et al. High incidence of hyperoxaluria in generalized peroxisomal disorders. Mol Genet Metab 2006;88(4):346–50. doi: 10.1016/j.ymgme.2006.03.004Google Scholar
Zaar, K, Angermüller, S, Völkl, A, Fahimi, HD. Pipecolic acid is oxidized by renal and hepatic peroxisomes. Implications for Zellweger’s cerebro-hepato-renal syndrome (CHRS). Exp Cell Res 1986;164(1):267–71. doi: 10.1016/0014-4827(86)90475-1Google Scholar
Frerman, FE, Goodman, SI. (1995). Nuclear-encoded defects of the mitochondrial respiratory chain, including glutaric acidemia type II. In Shriver, CR, Beaudet, AL, Sly, WS and Valle, D (Eds.), The Metabolic and Molecular Bases of Inherited Disease, 7th Ed., pp. 1611–29. McGraw-Hill: New York.Google Scholar
Crowther, LM, Mathis, D, Poms, M, Plecko, B. New insights into human lysine degradation pathways with relevance to pyridoxine-dependent epilepsy due to antiquitin deficiency. J Inherit Metab Dis 2019;42(4):620–8. doi: 10.1002/jimd.12076Google Scholar
Fransen, M, Lismont, C. Peroxisomes and cellular oxidant/antioxidant balance: protein redox modifications and impact on inter-organelle communication. Subcell Biochem 2018;89:435–61. doi: 10.1007/978-981-13-2233-4_19Google Scholar
Wanders, RJA, Klouwer, FCC, Ferdinandusse, S, Waterham, HR, Poll-Thé, BT. Clinical and laboratory diagnosis of peroxisomal disorders. Methods Mol Biol Clifton NJ 2017;1595:329–42. doi: 10.1007/978-1-4939-6937-1_30Google Scholar
Braverman, NE, et al. Peroxisome biogenesis disorders in the Zellweger spectrum: an overview of current diagnosis, clinical manifestations, and treatment guidelines. Mol Genet Metab 2016;117(3):313–21. doi: 10.1016/j.ymgme.2015.12.009Google Scholar
Peduto, A, et al. Hyperpipecolic acidaemia: a diagnostic tool for peroxisomal disorders. Mol Genet Metab 2004;82(3):224–30. doi: 10.1016/j.ymgme.2004.04.010Google Scholar
De Biase, I, et al. Laboratory diagnosis of disorders of peroxisomal biogenesis and function: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2020;22(4):686–97. doi: 10.1038/s41436-019-0713-9Google Scholar
Ferdinandusse, S, Houten, SM. Peroxisomes and bile acid biosynthesis. Biochim Biophys Acta 2006;1763(12):1427–40. doi: 10.1016/j.bbamcr.2006.09.001Google Scholar
Hubbard, WC, et al. Newborn screening for X-linked adrenoleukodystrophy (X-ALD): validation of a combined liquid chromatography-tandem mass spectrometric (LC-MS/MS) method.Mol Genet Metab 2009;97(3):212–20. doi: 10.1016/j.ymgme.2009.03.010Google Scholar
Kemper, AR, et al. Newborn screening for X-linked adrenoleukodystrophy: evidence summary and advisory committee recommendation. Genet Med 2017;19(1):121–6. doi: 10.1038/gim.2016.68Google Scholar
Ferdinandusse, S, Ebberink, MS, Vaz, FM, Waterham, HR, Wanders, RJA. The important role of biochemical and functional studies in the diagnostics of peroxisomal disorders. J Inherit Metab Dis 2016;39(4):531–43. doi: 10.1007/s10545-016-9922-4Google Scholar
Berendse, K, et al. Zellweger spectrum disorders: clinical manifestations in patients surviving into adulthood. J Inherit Metab Dis 2016;39(1):93106. doi: 10.1007/s10545-015-9880-2Google Scholar
Falkenberg, KD, et al. Allelic expression imbalance promoting a mutant PEX6 allele causes Zellweger spectrum disorder. Am J Hum Genet 2017;101(6):965–76. doi: 10.1016/j.ajhg.2017.11.007Google Scholar
Steinberg, S, et al. The PEX Gene Screen: molecular diagnosis of peroxisome biogenesis disorders in the Zellweger syndrome spectrum. Mol Genet Metab 2004;83(3):252–63. doi: 10.1016/j.ymgme.2004.08.008Google Scholar
Shimozawa, N, Nagase, T, Takemoto, Y, Ohura, T, Suzuki, Y, Kondo, N. Genetic heterogeneity of peroxisome biogenesis disorders among Japanese patients: evidence for a founder haplotype for the most common PEX10 gene mutation. Am J Med Genet A 2003;120(1):40–3. doi: 10.1002/ajmg.a.20030Google Scholar
Levesque, S, et al. A founder mutation in the PEX6 gene is responsible for increased incidence of Zellweger syndrome in a French Canadian population. BMC Med Genet 2012;13:72. doi: 10.1186/1471-2350-13-72Google Scholar
Yik, WY, Steinberg, SJ, Moser, AB, Moser, HW, Hacia, JG. Identification of novel mutations and sequence variation in the Zellweger syndrome spectrum of peroxisome biogenesis disorders. Hum Mutat 2009;30(3):E467480. doi: 10.1002/humu.20932Google Scholar
Wiedemann, HR. Hans-Ulrich Zellweger (1909–1990). Eur J Pediatr 1991;150(7):451. doi: 10.1007/bf01958418Google Scholar
Govaerts, L, Monnens, L, Tegelaers, W, Trijbels, F, van Raay-Selten, A. Cerebro-hepato-renal syndrome of Zellweger: clinical symptoms and relevant laboratory findings in 16 patients. Eur J Pediatr 1982;139(2):125–8. doi: 10.1007/bf00441495Google Scholar
Smith, DW, Opitz, JM, Inhorn, SL. A syndrome of multiple developmental defects including polycystic kidneys and intrahepatic biliary dysgenesis in 2 siblings. J Pediatr 1965;67(4):617–24. doi: 10.1016/s0022-3476(65)80433-4Google Scholar
Gilchrist, KW, Gilbert, EF, Shahidi, NT, Opitz, JM. The evaluation of infants with the Zellweger (cerebro-hepato-renal) syndrome. Clin Genet 1975;7(5):413–16. doi: 10.1111/j.1399-0004.1975.tb00350.xGoogle Scholar
Barkovich, AJ, Peck, WW. MR of Zellweger syndrome. AJNR Am J Neuroradiol 1997;18(6):1163–70.Google Scholar
Berendse, K, Engelen, M, Linthorst, GE, van Trotsenburg, ASP, Poll, BT. The High prevalence of primary adrenal insufficiency in Zellweger spectrum disorders. Orphanet J Rare Dis 2014;9:133. doi: 10.1186/s13023-014-0133-5Google Scholar
Weller, S, Rosewich, H, Gärtner, J. Cerebral MRI as a valuable diagnostic tool in Zellweger spectrum patients. J Inherit Metab Dis 2008;31:270–80. doi: 10.1007/s10545-008-0856-3Google Scholar
Rush, ET, Goodwin, JL, Braverman, NE, Rizzo, WB. Low bone mineral density is a common feature of Zellweger spectrum disorders. Mol Genet Metab 2016;117(1):33–7. doi: 10.1016/j.ymgme.2015.11.009Google Scholar
Ratbi, I, et al. Heimler syndrome is caused by hypomorphic mutations in the peroxisome-biogenesis genes PEX1 and PEX6. Am J Hum Genet 2015;97(4):535–45. doi: 10.1016/j.ajhg.2015.08.011Google Scholar
Majewski, J, et al. A new ocular phenotype associated with an unexpected but known systemic disorder and mutation: novel use of genomic diagnostics and exome sequencing. J Med Genet 2011;48(9):593–6. doi: 10.1136/jmedgenet-2011-100288Google Scholar
Simons, J. Phenotypic variability in fraternal twins with PEX1 mutations: Zellweger syndrome with discordant clinical phenotype. Hered Genet 2013;2(1). doi: 10.4172/2161-1041.S5-001Google Scholar
Klouwer, FCC, Berendse, K, Ferdinandusse, S, Wanders, RJA, Engelen, M, Poll BT., The Zellweger spectrum disorders: clinical overview and management approach. Orphanet J Rare Dis 2015;10:151. doi: 10.1186/s13023-015-0368-9Google Scholar
Sevin, C, Ferdinandusse, S, Waterham, HR, Wanders, RJ, Aubourg, P. Autosomal recessive cerebellar ataxia caused by mutations in the PEX2 gene. Orphanet J Rare Dis 2011;6:8. doi: 10.1186/1750-1172-6-8Google Scholar
Zhang, C, et al. Ataxia with novel compound heterozygous PEX10 mutations and a literature review of PEX10-related peroxisome biogenesis disorders. Clin Neurol Neurosurg 2019;177:92–6. doi: 10.1016/j.clineuro.2019.01.004Google Scholar
Gootjes, J, Skovby, F, Christensen, E, Wanders, RJA, Ferdinandusse, S. Reinvestigation of trihydroxycholestanoic acidemia reveals a peroxisome biogenesis disorder. Neurology 2004;62(11):2077–81. doi: 10.1212/01.wnl.0000127576.26352.d1Google Scholar
Ebberink, MS et al. Identification of an unusual variant peroxisome biogenesis disorder caused by mutations in the PEX16 gene. J Med Genet 2010;47(9):608–15. doi: 10.1136/jmg.2009.074302Google Scholar
Bacino, C, et al. A homozygous mutation in PEX16 identified by whole-exome sequencing ending a diagnostic odyssey. Mol Genet Metab 2015;5:1518. doi: 10.1016/j.ymgmr.2015.09.001Google Scholar
Steinberg, SJ, et al. A PEX10 defect in a patient with no detectable defect in peroxisome assembly or metabolism in cultured fibroblasts. J Inherit Metab Dis 2009;32(1):109–19. doi: 10.1007/s10545-008-0969-8Google Scholar
Pineda, M, et al. Diagnosis and follow-up of a case of peroxisomal disorder with peroxisomal mosaicism. J Child Neurol 1999;14(7):434–9. doi: 10.1177/088307389901400705Google Scholar
Powers, JM, et al. Fetal cerebrohepatorenal (Zellweger) syndrome: dysmorphic, radiologic, biochemical, and pathologic findings in four affected fetuses. Hum Pathol 1985;16(6):610–20. doi: 10.1016/s0046-8177(85)80111-8Google Scholar
Maeda, K, et al. Oral bile acid treatment in two Japanese patients with Zellweger syndrome. J Pediatr Gastroenterol Nutr 2002;35(2):227–30. doi: 10.1097/00005176-200208000-00025Google Scholar
Lee, H.-F., Mak, S, Chi, C-S, Huang, C-S. Zellweger syndrome: report of one case. Acta Paediatr Tw 2001;42:53–6.Google Scholar
Setchell, KDR, et al. Oral bile acid treatment and the patient with Zellweger syndrome. Hepatology 1992;15(2):198207. doi: 10.1002/hep.1840150206Google Scholar
Danks, DM, Tippett, P, Adams, C, Campbell, P. Cerebro-hepato-renal syndrome of Zellweger. J Pediatr 1975;86(3):382–7.Google Scholar
Vamecq, J, et al. Multiple peroxisomal enzymatic deficiency disorders. Am J Pathol 1986;125(3):12.Google Scholar
Brun, A, Gilboa, M, Meeuwisse, GW, Nordgren, H. The Zellweger syndrome: subcellular pathology, neuropathology, and the demonstration of pneumocystis carinii pneumonitis in two siblings. Eur J Pediatr 1978;127(4):229–45. doi: 10.1007/BF00493539Google Scholar
Muller-Hocker, J, Walther, JU, Bise, K, Pongratz, D, Hubner, G. Mitochondrial myopathy with loosely coupled oxidative phosphorylation in a case of Zellweger syndrome. A cytochemical-ultrastructural study. Cell Pathol 1984;45:125–38.Google Scholar
Wilson, GN, et al. Zellweger syndrome: diagnostic assays, syndrome delineation, and potential therapy. Am J Med Genet 1986;24(1):6982. doi: 10.1002/ajmg.1320240109Google Scholar
Nakada, Y, et al. A case of pseudo-Zellweger syndrome with a possible bifunctional enzyme deficiency but detectable enzyme protein. Brain Dev 1993;15(6):453–6. doi: 10.1016/0387-7604(93)90087-OGoogle Scholar
Jaruratanasirikul, S, Vanskinanont, P, Saetung, P, Mitarnun, W. Zellweger syndrome: first reported case in Thailand and literature review. Southeast Asian J. Trop. Med. Public Health 1995;26(Suppl. 1):4751.Google Scholar
Huybrechts, SJ, et al. Identification of a novel PEX14 mutation in Zellweger syndrome. BMJ Case Rep 2009;2009. doi: 10.1136/bcr.07.2008.0503Google Scholar
Gilchrist, KW, Gilbert, EF, Goldfarb, S, Goll, U, Spranger, JW, Opitz, JM. Studies of malformation syndromes of man XIB: the cerebro-hepato-renal syndrome of zellweger: comparative pathology. Eur J Pediatr 1976;121(2):99118. doi: 10.1007/BF00443065Google Scholar
Chow, CW, Poulos, A, Fellenberg, AJ, Christodoulou, J, Danks, DM. Autopsy findings in two siblings with infantile Refsum disease. Acta Neuropathol 1992;83(2):190–5. doi: 10.1007/BF00308478Google Scholar
Hughes, JL, et al. Pathology of hepatic peroxisomes and mitochondria in patients with peroxisomal disorders. Virchows Arch A Pathol Anat Histopathol 1990;416(3):255–64. doi: 10.1007/BF01678985Google Scholar
Scotto, JM, et al. Infantile phytanic acid storage disease, a possible variant of Refsum’s disease: three cases, including ultrastructural studies of the liver. J Inherit Metab Dis 1982;5(2):8390. doi: 10.1007/BF01799998Google Scholar
Torvik, A, Torp, S, Kase, BF, EK, J, Skjeldal, O, Stokke, O. Infantile Refsum’s disease: a generalized peroxisomal disorder case report with postmortem examination. J Neurol Sci 1988;85:3953.Google Scholar
Nakamura, K, et al. Cerebro-hepato-renal syndrome of Zellweger. Pathol Int 1986;36(11): 1727–35. doi: 10.1111/j.1440-1827.1986.tb02236.xGoogle Scholar
Warren, M, Mierau, G, Wartchow, EP, Shimada, H, Yano, S. Histologic and ultrastructural features in early and advanced phases of Zellweger spectrum disorder (infantile Refsum disease). Ultrastruct Pathol 2018;42(3):220–7. doi: 10.1080/01913123.2018.1440272Google Scholar
Berendse, K, et al. Hepatic symptoms and histology in 13 patients with a Zellweger spectrum disorder. J Inherit Metab Dis 2019;42(5):955–65. doi: 10.1002/jimd.12132Google Scholar
Komatsuzaki, S, et al. First Japanese case of Zellweger syndrome with a mutation in PEX14. Pediatr Int Off J Jpn Pediatr Soc 2015;57(6):1189–92. doi: 10.1111/ped.12713Google Scholar
Bjørgo, K, et al. Biochemical and genetic characterization of an unusual mild PEX3-related Zellweger spectrum disorder. Mol Genet Metab 2017;121(4):325–8. doi: 10.1016/j.ymgme.2017.06.004Google Scholar
Heubi, JE, Setchell, KDR, Bove, KE. Long-term cholic acid therapy in Zellweger spectrum disorders. Case Rep Gastroenterol 2018;12(2):360–72. doi: 10.1159/000490095Google Scholar
Budden, SS, Kennaway, NG, Buist, NRM, Poulos, A, Weleber, RG. Dysmorphic syndrome with phytanic acid oxidase deficiency, abnormal very long chain fatty acids, and pipecolic acidemia: studies in four children. J Pediatr 1986;108(1):33–9. doi: 10.1016/S0022-3476(86)80765-XGoogle Scholar
Das, AK, Holmes, RD, Wilson, GN, Hajra, AK. Dietary ether lipid incorporation into tissue plasmalogens of humans and rodents. Lipids 1992;27(6):401–5. doi: 10.1007/BF02536379Google Scholar
Sani, MN, Ahmadi, M, Roohani, P, Rezaei, N. Early onset hepatocellular disease in an infant with Zellweger syndrome. Acta Med Iran 2015;53(10):656–8.Google Scholar
Heubi, JE, Bishop, WP. Long-term cholic acid treatment in a patient with Zellweger spectrum disorder. Case Rep Gastroenterol 2018;12(3):661–70. doi: 10.1159/000494555Google Scholar
Roels, F, Espeel, M, De Craemer, D. Liver pathology and immunocytochemistry in congenital peroxisomal diseases: a review. J Inherit Metab Dis 1991;14(6):853–75. doi: 10.1007/BF01800464Google Scholar
Roels, F, Espeel, M, Poggi, F, Mandel, H, Van Maldergem, L, Saudubray, JM. Human liver pathology in peroxisomal diseases: a review including novel data. Biochimie 1993;75(3–4):281–92. doi: 10.1016/0300-9084(93)90088-AGoogle Scholar
Mooi, WJ, Dingemans, KP, Van Den Bergh Weerman, MA, Jobsis, AC, Heymans, HSA, Barth, PG. Ultrastructure of the liver in the cerebrohepatorenal syndrome of Zellweger. Ultrastruct Pathol 1983;5(2–3):135–44. doi: 10.3109/01913128309141833Google Scholar
Kerckaert, I, Dingemans, KP, Heymans, HSA, Vamecq, J, Roels, F. Polarizing inclusions in some organs of children with congenital peroxisomal diseases (Zellweger’s, Refsum’s, chondrodysplasia punctata (rhizomelic form), X-linked adrenoleukodystrophy). J Inherit Metab Dis 1988;11(4):372–86. doi: 10.1007/BF01800426Google Scholar
Poll, BT, et al. A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudo-neonatal adrenoleukodystrophy). Am J Hum Genet 1988;42(3):422–34.Google Scholar
Ferdinandusse, S, et al. Clinical, biochemical, and mutational spectrum of peroxisomal acyl–coenzyme A oxidase deficiency. Hum Mutat 2007;28(9):904–12. doi: 10.1002/humu.20535Google Scholar
Carrozzo, R, et al. Peroxisomal acyl-CoA-oxidase deficiency: two new cases. Am J Med Genet A 2008;146A(13):1676–81. doi: 10.1002/ajmg.a.32298Google Scholar
Ferdinandusse, S, et al. Adult peroxisomal acyl-coenzyme A oxidase deficiency with cerebellar and brainstem atrophy. J Neurol Neurosurg Psychiatry 2010;81(3):310–12. doi: 10.1136/jnnp.2009.176255Google Scholar
Ferdinandusse, S, et al. A novel case of ACOX2 deficiency leads to recognition of a third human peroxisomal acyl-CoA oxidase. Biochim Biophys Acta BBA – Mol Basis Dis 2018;1864(3):952–8. doi: 10.1016/j.bbadis.2017.12.032Google Scholar
Monte, MJ, et al. ACOX2 deficiency: an inborn error of bile acid synthesis identified in an adolescent with persistent hypertransaminasemia. J Hepatol 2017;66(3):581–8. doi: 10.1016/j.jhep.2016.11.005Google Scholar
Vilarinho, S, et al. ACOX2 deficiency: a disorder of bile acid synthesis with transaminase elevation, liver fibrosis, ataxia, and cognitive impairment. Proc Natl Acad Sci 2016;113(40):11289–93. doi: 10.1073/pnas.1613228113Google Scholar
Ghirri, P, et al. A case of d-bifunctional protein deficiency: clinical, biochemical and molecular investigations: a severe case of DBP deficiency. Pediatr Int 2011;53(4):583–7. doi: 10.1111/j.1442-200X.2010.03255.xGoogle Scholar
Suzuki, Y, et al. d-3-Hydroxyacyl-CoA dehydratase/d-3-hydroxyacyl-coa dehydrogenase bifunctional protein deficiency: a newly identified peroxisomal disorder. Am J Hum Genet 1997;61(5):1153–62. doi: 10.1086/301599Google Scholar
Mizumoto, H, et al. Mild case of d-bifunctional protein deficiency associated with novel gene mutations: letter to the editor. Pediatr Int 2012; 54(2):303–4. doi: 10.1111/j.1442-200X.2012.03562.xGoogle Scholar
Khan, A, Wei, XC, Snyder, FF, Mah, JK, Waterham, H, Wanders, RJA. Neurodegeneration in D-bifunctional protein deficiency: diagnostic clues and natural history using serial magnetic resonance imaging. Neuroradiology 2010;52(12):1163–6. doi: 10.1007/s00234-010-0768-4Google Scholar
Grønborg, S, et al. Typical cMRI pattern as diagnostic clue for D-bifunctional protein deficiency without apparent biochemical abnormalities in plasma. Am J Med Genet A 2010;152A(11):2845–9. doi: 10.1002/ajmg.a.33677Google Scholar
Ferdinandusse, S, et al. Clinical and biochemical spectrum of D-bifunctional protein deficiency. Ann. Neurol 2006;59(1):92104. doi: 10.1002/ana.20702Google Scholar
Nascimento, J, et al. D-Bifunctional protein deficiency: a cause of neonatal onset seizures and hypotonia.Pediatr Neurol 2015;52(5):539–43. doi: 10.1016/j.pediatrneurol.2015.01.007Google Scholar
Matsukawa, T, et al. Slowly progressive d -bifunctional protein deficiency with survival to adulthood diagnosed by whole-exome sequencing. J Neurol Sci 2017;372:610. doi: 10.1016/j.jns.2016.11.009Google Scholar
Ferdinandusse, S, et al. Mutational spectrum of d-bifunctional protein deficiency and structure-based genotype-phenotype analysis. Am J Hum Genet 2006;78(1):112–24. doi: 10.1086/498880Google Scholar
Soorani-Lunsing, RJ, et al. Normal very-long-chain fatty acids in peroxisomal D-bifunctional protein deficiency: a diagnostic pitfall. J Inherit Metab Dis 2005;28(6):1172–4. doi: 10.1007/s10545-005-0149-zGoogle Scholar
Lines, MA, et al. Peroxisomal D-bifunctional protein deficiency: three adults diagnosed by whole-exome sequencing. Neurology 2014;82(11):963–8. doi: 10.1212/WNL.0000000000000219Google Scholar
Amor, DJ, et al. Heterozygous mutations in HSD17B4 cause juvenile peroxisomal D-bifunctional protein deficiency. Neurol Genet 2016;2(6):e114. doi: 10.1212/NXG.0000000000000114Google Scholar
McMillan, HJ, et al. Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) defines a new subtype of D-bifunctional protein deficiency. Orphanet J Rare Dis 2012;7:90. doi: 10.1186/1750-1172-7-90Google Scholar
Verhagen, JMA, et al. Incidental finding of alpha-methylacyl-CoA racemase deficiency in a patient with oculocutaneous albinism type 4. Am J Med Genet A 2012;158A(11):2931–4. doi: 10.1002/ajmg.a.35611Google Scholar
Ferdinandusse, S, et al. Mutations in the gene encoding peroxisomal alpha-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy. Nat Genet 2000;24(2):188–91. doi: 10.1038/72861Google Scholar
Setchell, KDR, et al. Liver disease caused by failure to racemize trihydroxycholestanoic acid: gene mutation and effect of bile acid therapy. Gastroenterology 2003;124(1):217–32. doi: 10.1053/gast.2003.50017Google Scholar
Dick, D, Horvath, R, Chinnery, PF. AMACR mutations cause late-onset autosomal recessive cerebellar ataxia. Neurology 2011;76(20):1768–70. doi: 10.1212/WNL.0b013e31821a4484Google Scholar
Clarke, CE, et al. Tremor and deep white matter changes in alpha-methylacyl-CoA racemase deficiency. Neurology 2004;63(1):188–9. doi: 10.1212/01.wnl.0000132841.81250.b7Google Scholar
Thompson, SA, Calvin, J, Hogg, S, Ferdinandusse, S, Wanders, RJA, Barker, RA. Relapsing encephalopathy in a patient with α-methylacyl-CoA racemase deficiency. BMJ Case Rep 2009;2009:bcr08.2008.0814. doi: 10.1136/bcr.08.2008.0814Google Scholar
Kapina, V, et al. Relapsing rhabdomyolysis due to peroxisomal alpha-methylacyl-coa racemase deficiency. Neurology 2010;75(14):1300–2. doi: 10.1212/WNL.0b013e3181f612a5Google Scholar
Haugarvoll, K, et al. MRI characterisation of adult onset alpha-methylacyl-coA racemase deficiency diagnosed by exome sequencing. Orphanet J Rare Dis 2013;8(1):1. doi: 10.1186/1750-1172-8-1Google Scholar
Setchell, KDR, et al. Genetic defects in bile acid conjugation cause fat-soluble vitamin deficiency. Gastroenterology 2013;144(5):945–55.e6. doi: 10.1053/j.gastro.2013.02.004Google Scholar
Hadžić, N, Bull, LN, Clayton, PT, Knisely, AS. Diagnosis in bile acid-CoA: amino acid N-acyltransferase deficiency. World J Gastroenterol 2012;18(25):3322–6. doi: 10.3748/wjg.v18.i25.3322Google Scholar
Chong, CPK, et al. Bile acid-CoA ligase deficiency – a new inborn error of bile acid metabolism. J Inherit Metab Dis 2012;35(3)521–30. doi: 10.1007/s10545-011-9416-3Google Scholar
Heubi, JE, et al. Treatment of bile acid amidation defects with glycocholic acid. Hepatology 2015;61(1):268–74. doi: 10.1002/hep.27401Google Scholar
Baes, M, Van Veldhoven, PP. Mouse models for peroxisome biogenesis defects and β-oxidation enzyme deficiencies. Biochim Biophys Acta BBA – Mol Basis Dis 2012;1822(9):14891500. doi: 10.1016/j.bbadis.2012.03.003Google Scholar
Keane, MH, et al. Bile acid treatment alters hepatic disease and bile acid transport in peroxisome-deficient PEX2 Zellweger mice. Hepatology 2007;45(4):982–97. doi: 10.1002/hep.21532Google Scholar
Krysko, O, et al. Neocortical and cerebellar developmental abnormalities in conditions of selective elimination of peroxisomes from brain or from liver. J Neurosci Res 2007;85(1):5872. doi: 10.1002/jnr.21097Google Scholar
Dirkx, R, et al. Absence of peroxisomes in mouse hepatocytes causes mitochondrial and ER abnormalities. Hepatology 2005;41(4):868–78. doi: 10.1002/hep.20628Google Scholar
Li, X, Baumgart, E, Morrell, JC, Jimenez-Sanchez, G, Valle, D, Gould, SJ. PEX11 beta deficiency is lethal and impairs neuronal migration but does not abrogate peroxisome function. Mol Cell Biol 2002;22(12):4358–65. doi: 10.1128/mcb.22.12.4358-4365.2002Google Scholar
Li, X, et al. PEX11alpha is required for peroxisome proliferation in response to 4-phenylbutyrate but is dispensable for peroxisome proliferator-activated receptor alpha-mediated peroxisome proliferation. Mol Cell Biol 2002;22(23):8226824000000000000. doi: 10.1128/mcb.22.23.8226-8240.2002Google Scholar
Weng, H, et al. Pex11α deficiency impairs peroxisome elongation and division and contributes to nonalcoholic fatty liver in mice. Am J Physiol Endocrinol Metab 2012; 304(2): E187E196. doi: 10.1152/ajpendo.00425.2012Google Scholar
Hiebler, S, et al. The Pex1-G844D mouse: a model for mild human Zellweger spectrum disorder. Mol Genet Metab 2014;111(4):522–32. doi: 10.1016/j.ymgme.2014.01.008Google Scholar
Berendse, K, et al. Liver disease predominates in a mouse model for mild human Zellweger spectrum disorder. Biochim Biophys Acta BBA – Mol Basis Dis 2019;1865(10):2774–87. doi: 10.1016/j.bbadis.2019.06.013Google Scholar
Fan, CY, et al. Targeted disruption of the peroxisomal fatty acyl-Coa oxidase gene: generation of a mouse model of pseudoneonatal adrenoleukodystrophya. Ann NY Acad Sci 1996;804(1):530–41. doi: 10.1111/j.1749-6632.1996.tb18643.xGoogle Scholar
Fan, CY, Pan, J, Usuda, N, Yeldandi, AV, Rao, MS, Reddy, JK. Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J Biol Chem 1998;273(25):15639–45. doi: 10.1074/jbc.273.25.15639Google Scholar
Huang, J, et al. Progressive endoplasmic reticulum stress contributes to hepatocarcinogenesis in fatty acyl-Coa oxidase 1–deficient mice. Am J Pathol 2011;179(2):703–13. doi: 10.1016/j.ajpath.2011.04.030Google Scholar
Baes, M, et al. Inactivation of the peroxisomal multifunctional protein-2 in mice impedes the degradation of not only 2-methyl-branched fatty acids and bile acid intermediates but also of very long chain fatty acids. J Biol Chem 2000;275(21)16329–36. doi: 10.1074/jbc.M001994200Google Scholar
Ferdinandusse, S, et al. Developmental changes of bile acid composition and conjugation in l- and d-bifunctional protein single and double knockout mice. J Biol Chem 2005;280(19):18658–66. doi: 10.1074/jbc.M414311200Google Scholar
Savolainen, K, et al. A mouse model for α-methylacyl-CoA racemase deficiency: adjustment of bile acid synthesis and intolerance to dietary methyl-branched lipids. Hum Mol Genet 2004;13(9):955–65. doi: 10.1093/hmg/ddh107Google Scholar
Selkälä, EM, et al. Metabolic adaptation allows Amacr-deficient mice to remain symptom-free despite low levels of mature bile acids. Biochim Biophys Acta BBA – Mol Cell Biol Lipids 2013;1831(8):1335–43. doi: 10.1016/j.bbalip.2013.05.002Google Scholar
Rogers, AB, Dintzis, RZ (2012). Liver and gallbladder, in Comparative Anatomy and Histology (pp. 193201). Philadelphia, PA: Elsevier.Google Scholar
Ferdinandusse, S, Denis, S, Dacremont, G, Wanders, RJA. Toxicity of peroxisomal C27-bile acid intermediates. Mol Genet Metab 2009;96(3):121–8. doi: 10.1016/j.ymgme.2008.11.165Google Scholar
Peeters, A, et al. Carbohydrate metabolism is perturbed in peroxisome-deficient hepatocytes due to mitochondrial dysfunction, amp-activated protein kinase (ampk) activation, and peroxisome proliferator-activated receptor γ coactivator 1α (pgc-1α) suppression. J Biol Chem 2011;286(49):42162–79. doi: 10.1074/jbc.M111.299727Google Scholar
Peeters, A, Swinnen, JV, Van Veldhoven, PP, Baes, M. Hepatosteatosis in peroxisome deficient liver despite increased β-oxidation capacity and impaired lipogenesis. Biochimie 2011;93(10):1828–38. doi: 10.1016/j.biochi.2011.06.034Google Scholar
Kovacs, WJ, et al. Peroxisome deficiency-induced ER stress and SREBP-2 pathway activation in the liver of newborn PEX2 knock-out mice. Biochim Biophys Acta 2012;1821(6):895907. doi: 10.1016/j.bbalip.2012.02.011Google Scholar
Martens, K, et al. Coordinate induction of PPARα and SREBP2 in multifunctional protein 2 deficient mice. Biochim Biophys Acta BBA – Mol Cell Biol Lipids 2008;1781(11):694702. doi: 10.1016/j.bbalip.2008.07.010Google Scholar
Hashimoto, T, et al. Peroxisomal and mitochondrial fatty acid beta-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor alpha and peroxisomal fatty acyl-CoA oxidase. Genotype correlation with fatty liver phenotype. J Biol Chem 1999;274(27):19228–36. doi: 10.1074/jbc.274.27.19228Google Scholar
Faust, PL, Kovacs, WJ. Cholesterol biosynthesis and ER stress in peroxisome deficiency. Biochimie 2014;98:7585. doi: 10.1016/j.biochi.2013.10.019Google Scholar
Mackie, JT, Atshaves, BP, Payne, HR, McIntosh, AL, Schroeder, F, Kier, AB. Phytol-induced hepatotoxicity in mice. Toxicol Pathol 2009;37(2):201–8. doi: 10.1177/0192623308330789Google Scholar
Cattley, RC, Popp, JA (2002). Liver, in Handbook of Toxicologic Pathology, 2nd Ed., (pp. 187–214). San Diego: Academic Press.Google Scholar
Gonzalez, FJ, Shah, YM. PPARα: Mechanism of species differences and hepatocarcinogenesis of peroxisome proliferators. Toxicology 2008;246(1)28. doi: 10.1016/j.tox.2007.09.030Google Scholar
Zeynelabidin, S, et al. Coagulopathy in Zellweger spectrum disorders: a role for vitamin K. J Inherit Metab Dis 2018;41(2):249–55. doi: 10.1007/s10545-017-0113-8Google Scholar
Rüether, K, et al. Adult Refsum disease: a form of tapetoretinal dystrophy accessible to therapy. Surv Ophthalmol 2010;55(6):531–8. doi: 10.1016/j.survophthal.2010.03.007Google Scholar
Baldwin, EJ, Gibberd, FB, Harley, C, Sidey, MC, Feher, MD, Wierzbicki, AS. The effectiveness of long-term dietary therapy in the treatment of adult Refsum disease. J Neurol Neurosurg Psychiatry 2010;81(9):954–7. doi: 10.1136/jnnp.2008.161059Google Scholar
Noguer, MT, Martinez, M. Visual follow-up in peroxisomal-disorder patients treated with docosahexaenoic acid ethyl ester. Invest Ophthalmol Vis Sci 2010;51(4): 2277–85. doi: 10.1167/iovs.09-4020Google Scholar
Paker, AM, et al. Docosahexaenoic acid therapy in peroxisomal diseases: results of a double-blind, randomized trial. Neurology 2010;75(9):826–30. doi: 10.1212/WNL.0b013e3181f07061Google Scholar
Bove, KE, Heubi, JE, Balistreri, WF, Setchell, KDR. Bile acid synthetic defects and liver disease: a comprehensive review. Pediatr Dev Pathol 2004;7(4):315–34. doi: 10.1007/s10024-002-1201-8Google Scholar
Klouwer, FCC, et al. The cholic acid extension study in Zellweger spectrum disorders: results and implications for therapy. J Inherit Metab Dis 2019;42(2):303–12. doi: 10.1002/jimd.12042Google Scholar
Berendse, K, et al. Cholic acid therapy in Zellweger spectrum disorders. J Inherit Metab Dis 2016;39(6):859–68. doi: 10.1007/s10545-016-9962-9Google Scholar
Heubi, JE, Bove, KE, Setchell, KDR. Oral cholic acid is efficacious and well tolerated in patients with bile acid synthesis and Zellweger spectrum disorders. J Pediatr Gastroenterol Nutr 2017;65(3):321–6. doi: 10.1097/MPG.0000000000001657Google Scholar
Klouwer, FCC, et al. Oral cholic acid in Zellweger spectrum disorders: a word of caution. J Pediatr Gastroenterol Nutr 2018;66(2):e57. doi: 10.1097/MPG.0000000000001763Google Scholar
Sokal, EM, et al. Hepatocyte transplantation in a 4-year-old girl with peroxisomal biogenesis disease: technique, safety, and metabolic follow-up1. Transplantation 2003;76(4):735–8. doi: 10.1097/01.TP.0000077420.81365.53Google Scholar
Van Maldergem, L, et al. Orthotopic liver transplantation from a living-related donor in an infant with a peroxisome biogenesis defect of the infantile Refsum disease type. J Inherit Metab Dis 2005;28(4):593600. doi: 10.1007/s10545-005-0593-9Google Scholar
Matsunami, M, et al. Living-donor liver transplantation from a heterozygous parent for infantile Refsum disease. Pediatrics 2016;137(6). doi: 10.1542/peds.2015-3102Google Scholar
Demaret, T, et al. Living-donor liver transplantation for mild Zellweger spectrum disorder: up to 17 years follow-up. Pediatr Transplant 2018;22(3):e13112. doi: 10.1111/petr.13112Google Scholar
Wang, RY, et al. Effects of hematopoietic stem cell transplantation on acyl-CoA oxidase deficiency: a sibling comparison study. J Inherit Metab Dis 2014;37(5):791–9. doi: 10.1007/s10545-014-9698-3Google Scholar
MacLean, GE, et al. Zellweger spectrum disorder patient-derived fibroblasts with the PEX1-Gly843Asp allele recover peroxisome functions in response to flavonoids. J Cell Biochem 2019;120(3):3243–58. doi: 10.1002/jcb.27591Google Scholar
Zhang, R, Chen, L, Jiralerspong, S, Snowden, A, Steinberg, S, Braverman, N. Recovery of PEX1-Gly843Asp peroxisome dysfunction by small-molecule compounds. Proc Natl Acad Sci USA 2010;107(12):5569–74. doi: 10.1073/pnas.0914960107Google Scholar
Berendse, K, Ebberink, MS, Ijlst, L, Poll, BT, Wanders, RJA, Waterham, HR. Arginine improves peroxisome functioning in cells from patients with a mild peroxisome biogenesis disorder. Orphanet J Rare Dis 2013;8:138. doi: 10.1186/1750-1172-8-138Google Scholar
Wei, H, Kemp, S, McGuinness, MC, Moser, AB, Smith, KD. Pharmacological induction of peroxisomes in peroxisome biogenesis disorders. Ann Neurol 2000;47(3):286–96.Google Scholar
Law, KB, et al. The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders. Autophagy 2017;13(5):868–84. doi: 10.1080/15548627.2017.1291470Google Scholar
Wanders, RJA, Komen, J, Kemp, S. Fatty acid omega-oxidation as a rescue pathway for fatty acid oxidation disorders in humans. FEBS J 2011;278(2):182–94. doi: 10.1111/j.1742-4658.2010.07947.xGoogle Scholar
Brites, P, et al. Alkyl-glycerol rescues plasmalogen levels and pathology of ether-phospholipid deficient mice. PloS One 2011;6(12):e28539. doi: 10.1371/journal.pone.0028539Google Scholar
Braverman, N, et al. A Pex7 hypomorphic mouse model for plasmalogen deficiency affecting the lens and skeleton. Mol Genet Metab 2010;99(4):408–16. doi: 10.1016/j.ymgme.2009.12.005Google Scholar
Fallatah, W, et al. Oral administration of a synthetic vinyl-ether plasmalogen normalizes open field activity in a mouse model of Rhizomelic chondrodysplasia punctata. Dis Model Mech Dec 2019. doi: 10.1242/dmm.042499Google Scholar

References

Summar, ML, Koelker, S, Freedenberg, D, et al. The incidence of urea cycle disorders. Mol Genet Metab 2013;110(1–2):179–80.Google Scholar
Adeva, MM, Souto, G, Blanco, N, Donapetry, C. Ammonium metabolism in humans. Metabolism 2012;61(11):1495–511.Google Scholar
Braissant, O, McLin, VA, Cudalbu, C. Ammonia toxicity to the brain. J Inherit Metab Dis 2013;36(4):595612.Google Scholar
Batshaw, ML, Tuchman, M, Summar, M, Seminara, J, Members of the Urea Cycle Disorders C. A longitudinal study of urea cycle disorders. Mol Genet Metab 2014;113(1–2):127–30.Google Scholar
Fecarotta, S, Parenti, G, Vajro, P, et al. HHH syndrome (hyperornithinaemia, hyperammonaemia, homocitrullinuria), with fulminant hepatitis-like presentation. J Inherit Metab Dis 2006;29(1):186–9.Google Scholar
Gallagher, RC, Lam, C, Wong, D, Cederbaum, S, Sokol, RJ. Significant hepatic involvement in patients with ornithine transcarbamylase deficiency. J Pediatr 2014;164(4):720–5 e726.Google Scholar
Mori, T, Nagai, K, Mori, M, et al. Progressive liver fibrosis in late-onset argininosuccinate lyase deficiency. Pediatr Dev Pathol 2002;5(6):597601.Google Scholar
Mustafa, A, Clarke, JT. Ornithine transcarbamoylase deficiency presenting with acute liver failure. J Inherit Metab Dis 2006;29(4):586.Google Scholar
Tuchman, M, Mauer, SM, Holzknecht, RA, Summar, ML, Vnencak-Jones, CL. Prospective versus clinical diagnosis and therapy of acute neonatal hyperammonaemia in two sisters with carbamyl phosphate synthetase deficiency. J Inherit Metab Dis 1992;15(2):269–77.Google Scholar
Summar, ML, Barr, F, Dawling, S, et al. Unmasked adult-onset urea cycle disorders in the critical care setting. Crit Care Clin 2005;21(4 Suppl.):S18.Google Scholar
Summar, ML, Dobbelaere, D, Brusilow, S, Lee, B. Diagnosis, symptoms, frequency and mortality of 260 patients with urea cycle disorders from a 21-year, multicentre study of acute hyperammonaemic episodes. Acta Paediatr 2008;97(10):1420–5.Google Scholar
Batshaw, ML, Brusilow, SW. Valproate-induced hyperammonemia. Ann Neurol 1982;11(3):319–21.Google Scholar
Castro-Gago, M, Rodrigo-Saez, E, Novo-Rodriguez, I, Camina, MF, Rodriguez-Segade, S. Hyperaminoacidemia in epileptic children treated with valproic acid. Childs Nerv Syst 1990;6(8):434–6.Google Scholar
Kugoh, T, Yamamoto, M, Hosokawa, K. Blood ammonia level during valproic acid therapy. Jpn J Psychiatry Neurol 1986;40(4):663–8.Google Scholar
Mitchell, RB, Wagner, JE, Karp, JE, et al. Syndrome of idiopathic hyperammonemia after high-dose chemotherapy: review of nine cases. Am J Med 1988;85(5):662–7.Google Scholar
Vainstein, G, Korzets, Z, Pomeranz, A, Gadot, N. Deepening coma in an epileptic patient: the missing link to the urea cycle. Hyperammonaemic metabolic encephalopathy. Nephrol Dial Transplant 2002;17(7):1351–3.Google Scholar
Baddour, E, Tewksbury, A, Stauner, N. Valproic acid-induced hyperammonemia: incidence, clinical significance, and treatment management. Ment Health Clin 2018;8(2):73–7.Google Scholar
Haberle, J, Pauli, S, Schmidt, E, Schulze-Eilfing, B, Berning, C, Koch, HG. Mild citrullinemia in Caucasians is an allelic variant of argininosuccinate synthetase deficiency (citrullinemia type 1). Mol Genet Metab 2003;80(3):302–6.Google Scholar
Erez, A, Nagamani, SC, Lee, B. Argininosuccinate lyase deficiency-argininosuccinic aciduria and beyond. Am J Med Genet C Semin Med Genet 2011;157C(1):45–53.Google Scholar
Saheki, T, Song, YZ (1993). Citrin deficiency. In: Adam, MP, Ardinger, HH, Pagon, RA, et al., (Eds.), GeneReviews((R)). Seattle, WA: University of Washington.Google Scholar
Ohura, T, Kobayashi, K, Tazawa, Y, et al. Clinical pictures of 75 patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). J Inherit Metab Dis 2007;30(2):139–44.Google Scholar
Naito, E, Ito, M, Matsuura, S, et al. Type II citrullinaemia (citrin deficiency) in a neonate with hypergalactosaemia detected by mass screening. J Inherit Metab Dis 2002;25(1):71–6.Google Scholar
Saheki, T, Kobayashi, K. Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD). J Hum Genet 2002;47(7):333–41.Google Scholar
Saheki, T, Kobayashi, K, Iijima, M, et al. Adult-onset type II citrullinemia and idiopathic neonatal hepatitis caused by citrin deficiency: involvement of the aspartate glutamate carrier for urea synthesis and maintenance of the urea cycle. Mol Genet Metab 2004;81(Suppl. 1):S2026.Google Scholar
Ben-Shalom, E, Kobayashi, K, Shaag, A, et al. Infantile citrullinemia caused by citrin deficiency with increased dibasic amino acids. Mol Genet Metab 2002;77(3):202–8.Google Scholar
Tamamori, A, Okano, Y, Ozaki, H, et al. Neonatal intrahepatic cholestasis caused by citrin deficiency: severe hepatic dysfunction in an infant requiring liver transplantation. Eur J Pediatr 2002;161(11):609–13.Google Scholar
Martinelli, D, Diodato, D, Ponzi, E, et al. The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome. Orphanet J Rare Dis 2015;10:29.Google Scholar
Hommes, FA, Eller, AG, Scott, DF, Carter, AL. Separation of ornithine and lysine activities of the ornithine-transcarbamylase-catalyzed reaction. Enzyme 1983;29(4):271–7.Google Scholar
da Fonseca-Wollheim, F. Deamidation of glutamine by increased plasma gamma-glutamyltransferase is a source of rapid ammonia formation in blood and plasma specimens. Clin Chem 1990;36(8 Pt 1): 1479–82.Google Scholar
Nikolac, N, Omazic, J, Simundic, AM. The evidence-based practice for optimal sample quality for ammonia measurement. Clin Biochem 2014;47(12):991–5.Google Scholar
Steiner, RD, Cederbaum, SD. Laboratory evaluation of urea cycle disorders. J Pediatr 2001;138(1 Suppl.):S21–9.Google Scholar
Summar, M. Current strategies for the management of neonatal urea cycle disorders. J Pediatr 2001;138(1 Suppl.):S30–9.Google Scholar
Usmani, SS, Cavaliere, T, Casatelli, J, Harper, RG. Plasma ammonia levels in very low birth weight preterm infants. J Pediatr 1993;123(5):797800.Google Scholar
Tuchman, M, Georgieff, MK. Transient hyperammonemia of the newborn: a vascular complication of prematurity? J Perinatol 1992;12(3):234–6.Google Scholar
Hanudel, M, Avasare, S, Tsai, E, Yadin, O, Zaritsky, J. A biphasic dialytic strategy for the treatment of neonatal hyperammonemia. Pediatr Nephrol 2014;29(2):315–20.Google Scholar
Summar, M, Pietsch, J, Deshpande, J, Schulman, G. Effective hemodialysis and hemofiltration driven by an extracorporeal membrane oxygenation pump in infants with hyperammonemia. J Pediatr 1996;128(3):379–82.Google Scholar
Batshaw, ML. Sodium benzoate and arginine: alternative pathway therapy in inborn errors of urea synthesis. Prog Clin Biol Res 1983;127:6983.Google Scholar
Batshaw, ML, Brusilow, SW. Evidence of lack of toxicity of sodium phenylacetate and sodium benzoate in treating urea cycle enzymopathies. J Inherit Metab Dis 1981;4(4):231.Google Scholar
Butterworth, RF. Effects of hyperammonaemia on brain function. J Inherit Metab Dis 1998;21(Suppl. 1):620.Google Scholar
Willard-Mack, CL, Koehler, RC, Hirata, T, et al. Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience 1996;71(2):589–99.Google Scholar
Caldovic, L, Morizono, H, Daikhin, Y, et al. Restoration of ureagenesis in N-acetylglutamate synthase deficiency by N-carbamylglutamate. J Pediatr 2004;145(4):552–4.Google Scholar
Kuchler, G, Rabier, D, Poggi-Travert, F, et al. Therapeutic use of carbamylglutamate in the case of carbamoyl-phosphate synthetase deficiency. J Inherit Metab Dis 1996;19(2):220–2.Google Scholar
Shi, D, Zhao, G, Ah Mew, N, Tuchman, M. Precision medicine in rare disease: mechanisms of disparate effects of N-carbamyl-l-glutamate on mutant CPS1 enzymes. Mol Genet Metab 2017;120(3):198206.Google Scholar
Ah Mew, N, McCarter, R, Daikhin, Y, et al. Augmenting ureagenesis in patients with partial carbamyl phosphate synthetase 1 deficiency with N-carbamyl-L-glutamate. J Pediatr 2014;165(2):401–3 e403.Google Scholar
Ah Mew, N, Cnaan, A, McCarter, R, et al. Conducting an investigator-initiated randomized double-blinded intervention trial in acute decompensation of inborn errors of metabolism: lessons from the N-Carbamylglutamate Consortium. Transl Sci Rare Dis 2018;3(3–4):157–70.Google Scholar
Fujiwara, M. Role of ammonia in the pathogenesis of brain edema. Acta Med Okayama 1986;40(6):313–20.Google Scholar
Fujiwara, M, Watanabe, A, Shiota, T, et al. Hyperammonemia-induced cytotoxic brain edema under osmotic opening of blood-brain barrier in dogs. Res Exp Med 1985;185(6):425–7.Google Scholar
Wiwattanadittakul, N, Prust, M, Gaillard, WD, et al. The utility of EEG monitoring in neonates with hyperammonemia due to inborn errors of metabolism. Mol Genet Metab 2018;125(3):235–40.Google Scholar
Msall, M, Batshaw, ML, Suss, R, Brusilow, SW, Mellits, ED. Neurologic outcome in children with inborn errors of urea synthesis. Outcome of urea-cycle enzymopathies. N Engl J Med 1984;310(23):1500–5.Google Scholar
Rabier, D, Narcy, C, Bardet, J, Parvy, P, Saudubray, JM, Kamoun, P. Arginine remains an essential amino acid after liver transplantation in urea cycle enzyme deficiencies. J Inherit Metab Dis 1991;14(3):277–80.Google Scholar
Yu, L, Rayhill, SC, Hsu, EK, Landis, CS. Liver Transplantation for Urea Cycle Disorders: Analysis of the United Network for Organ Sharing Database. Transplant Proc 2015;47(8):2413–18.Google Scholar
Crowe, L, Anderson, V, Hardikar, W, Boneh, A. Cognitive and behavioural outcomes of paediatric liver transplantation for ornithine transcarbamylase deficiency. JIMD Rep 2019;43:1925.Google Scholar
Campeau, PM, Pivalizza, PJ, Miller, G, et al. Early orthotopic liver transplantation in urea cycle defects: follow up of a developmental outcome study. Mol Genet Metab 2010;100(Suppl. 1):S84–7.Google Scholar
Wilnai, Y, Blumenfeld, YJ, Cusmano, K, et al. Prenatal treatment of ornithine transcarbamylase deficiency. Mol Genet Metab 2018;123(3):297300.Google Scholar
Gropman, AL, Fricke, ST, Seltzer, RR, et al. 1H MRS identifies symptomatic and asymptomatic subjects with partial ornithine transcarbamylase deficiency. Mol Genet Metab 2008;95(1–2):2130.Google Scholar
Waisbren, SE, Gropman, AL, Members of the Urea Cycle Disorders C, Batshaw, ML. Improving long term outcomes in urea cycle disorders-report from the Urea Cycle Disorders Consortium. J Inherit Metab Dis 2016;39(4):573–84.Google Scholar
Bireley, WR, Van Hove, JL, Gallagher, RC, Fenton, LZ. Urea cycle disorders: brain MRI and neurological outcome. Pediatr Radiol 2012;42(4):455–62.Google Scholar
Posset, R, Garbade, SF, Boy, N, et al. Transatlantic combined and comparative data analysis of 1095 patients with urea cycle disorders: a successful strategy for clinical research of rare diseases. J Inherit Metab Dis 2019;42(1):93106.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×