Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T16:23:59.930Z Has data issue: false hasContentIssue false

One - Introduction and the Evolution of Life on Earth

Published online by Cambridge University Press:  13 April 2023

Norman Maclean
Affiliation:
University of Southampton
Get access

Summary

This chapter serves as an introduction to the book. It discusses the origin of Planet Earth and its Moon, their dependence on the Sun for energy, and the evolution of life on Earth. The evolution of the first living cell seems to have been a single event and all life on Earth is directly derived from this individual primary organism. The first life forms were anaerobic bacteria, but these later gave rise to photosynthesising cyanobacteria, which produced oxygen. The presence of oxygen eventually led to the emergence of aerobic animals and plants. The chapter then details the emergence of the oceans and supercontinents Pangea and Gondwanaland, the eventual break-up of the supercontinents and the development of the varied ecosystems which characterise Planet Earth at the present time.

Type
Chapter
Information
The Living Planet
The State of the World's Wildlife
, pp. 1 - 17
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Attenborough, D. (2020) A Life on Our Planet: My Witness Statement and a Vision for the Future. London: Witness Books/Penguin Random House.Google Scholar
Fortey, R. (2000)Trilobite!: Eyewitness to Evolution. New York: Vintage Books.CrossRefGoogle Scholar
Gould, S.J. (2000) Wonderful Life: The Burgess Shale and the History of Nature. New York: Vintage Books.Google Scholar
Grossnickle, D.M. and Newham, E. (2016) Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K–Pg boundary. Proc R Soc B 283(1832): 20160256.Google Scholar
Lyons, T. and Planavsky, N. (2012) Extreme climate change linked to early animal evolution. Science Daily (Sept. 26, 2012).Google Scholar
Stringer, C. (2011) The Origin of Our Species. London: Penguin Books.Google Scholar
Theobald, D.L. (2010) A formal test of the theory of universal common ancestry. Nature, 465: 219222.Google Scholar
Tudge, C. (2000) The Variety of Life: A Survey and a Celebration of all the Creatures that Have Ever Lived. Oxford: Oxford University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×