Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T19:26:37.679Z Has data issue: false hasContentIssue false

15 - Food acquisition modes and habitat use in lizards: questions from an integrative perspective

Published online by Cambridge University Press:  04 August 2010

Roger A. Anderson
Affiliation:
Department of Biology Western Washington University
Stephen M. Reilly
Affiliation:
Ohio University
Lance B. McBrayer
Affiliation:
Georgia Southern University
Donald B. Miles
Affiliation:
Ohio University
Get access

Summary

Introduction

The four basic tasks, EPM, FAM, and habitat

One useful theoretical focus in evolutionary ecology is that an animal has four basic, autecological tasks: (1) find, acquire and utilize food; (2) avoid, evade, and deter predators; (3) cope with abiotic stresses and avoid abiotic extremes; and (4) acquire mates and reproduce. An integrative understanding would require knowing the relative influence of each of these tasks on the ecology of an individual, on the population, and on the evolution of higher taxa. In addition, it would be important to identify and understand how behavioral traits (ethotypes), physiological traits (physiotypes), and morphological traits (morphotypes) of animals are adapted to each of the four basic autecological tasks (Fig. 15.1). I refer to the sum of these traits as the EPM (the ethophysiomorph or ethophysiomorphotype). Among the four basic autecological tasks, food acquisition and utilization may be the primary, albeit sometimes indirect, cause for salient features of ethotypes, physiotypes, and morphotypes (and thus EPMs) of lizards and other animals (Anderson and Karasov, 1988).

The classic, general vertebrate mode of food acquisition as mobile, ectothermic predators on invertebrates continues to dominate in lizards (basal level in Fig. 15.1), and many features of lizards appear to be related to the basic autecological task of food acquisition (Pianka and Vitt, 2003). The set of physiological, behavioral, and morphological characteristics (the EPM) that are integrally involved in the search, detection, capture, and eating of food, may be considered an adaptive syndrome (Eckhardt, 1979) that I refer to as the “food acquisition mode,” FAM. An adaptive syndrome is a coordinated set of characteristics (adaptive traits) associated with an issue of overriding importance (a core adaptation) to an organism (Eckhardt, 1979).

Type
Chapter
Information
Lizard Ecology , pp. 450 - 490
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolph, S. C. (1990). Influence of behavioral thermoregulation on microhabitat use by two Sceloporus lizards. Ecology 71, 315–27.CrossRefGoogle Scholar
Anderson, R. A. (1986). Foraging behavior, energetics of reproduction, and sexual selection in a widely-foraging lizard Cnemidophorus tigris. PhD. dissertation, University of California, Los Angeles.
Anderson, R. A. (1993). Analysis of foraging in a lizard, Cnemidophorus tigris: salient features and environmental effects. In Biology of Whiptail Lizards (Genus Cnemidophorus), ed. Wright, J. W. and Vitt, L. J., pp. 83–116. Norman, OK: Oklahoma Museum of Natural History.Google Scholar
Anderson, R. A. (1994). Functional and population responses of the lizard Cnemidophorus tigris to environmental fluctuations. Am. Zool. 34. 409–21.CrossRefGoogle Scholar
Anderson, R. A. and Karasov, W. H. (1981). Contrast in energy intake and expenditure in sit-and-wait and widely foraging lizards. Oecologia 49, 67–72.CrossRefGoogle Scholar
Anderson, R. A. and Karasov, W. H. (1988). Energetics of the lizard, Cnemidophorus tigris, and life history consequences of food acquisition mode. Ecol. Monogr. 58, 79–110.CrossRefGoogle Scholar
Anderson, R. A. and Vitt, L. J. (1990). Sexual selection versus alternative causes of sexual dimorphism in teiid lizards. Oecologia 84, 145–57.CrossRefGoogle ScholarPubMed
Andrews, R. M. (1979). The lizard Corytophanes cristatus: an extreme “sit-and-wait” predator. Biotropica 11, 126–39.CrossRefGoogle Scholar
Angert, A. L., Hutchison, D., Glossip, D. and Losos, J. B. (2002). Microhabitat use and thermal biology of the collared lizard (Crotaphytus collaris collaris) and the fence lizard (Sceloporus undulatus hyacinthinus) in Missouri Glades. J. Herpetol. 36, 23–9.CrossRefGoogle Scholar
Arthur, S. M., Manly, B. F. J., McDonald, L. L. and Garner, G. W. (1996). Assessing habitat selection when availability changes. Ecology 77, 215–27.CrossRefGoogle Scholar
Asplund, K. K. (1974). Body size and habitat utilization in whiptail lizards (Cnemidophorus). Copeia 1974, 695–703.CrossRefGoogle Scholar
Auffenberg, W. (1981). The Behavioral Ecology of the Komodo Monitor. Gainesville, FL: University of Florida Press.Google Scholar
Auffenberg, W. (1994). The Bengal Monitor. Gainesville, FL: University of Florida Press.Google Scholar
Avery, R. A. and Bond, D. J. (1989). Movement patterns of lacertid lizards: effects of temperature on speed, pauses and gait in Lacerta vivipora. Amph.-Rept. 10, 77–84.CrossRefGoogle Scholar
Bartholomew, G. A. (1986). The role of natural history in contemporary biology. BioScience 36, 324–9.CrossRefGoogle Scholar
Bashey, F. and Dunham, A. E. (1997). Elevational variation in the thermal constraints on and microhabitat preferences of the greater earless lizard Cophosaurus texanus. Copeia 1997, 725–37.CrossRefGoogle Scholar
Bauwens, D., Garland, T. Jr., Castilla, A. M. and Damme, R. (1995). Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioral covariation. Evolution 49, 848–63.Google ScholarPubMed
Beck, D. D. and Jennings, R. D. (2003). Habitat use by gila monsters: the importance of shelters. Herpetol. Monogr. 17, 111–29.CrossRefGoogle Scholar
Bickel, R. and Losos, J. B. (2002). Patterns of morphological variation and correlates of habitat use in chameleons. Biol. J. Linn. Soc. 76, 91–103.CrossRefGoogle Scholar
Block, W. M. and Brennan, L. A. (1993). The habitat concept in ornithology: theory and applications. In Current Ornithology, vol. 11, ed. Power, D. M., pp. 35–91. New York: Plenum Press.CrossRefGoogle Scholar
Bonine, K. E. and Garland, T. Jr. (1999). Sprint performance of phyrnosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length. J. Zool. Lond. 248, 255–65.CrossRefGoogle Scholar
Buettell, K. and Losos, J. B. (1999). Ecological morphology of Caribbean anoles. Herp. Monogr. 13, 1–28.CrossRefGoogle Scholar
Butler, M. A. (2005). Foraging mode of the chameleon, Bradypodion pumilum: a challenge to the sit-and-wait versus active forager paradigm?Biol. J. Linn. Soc. 84, 797–808.CrossRefGoogle Scholar
Castilla, A. M. and Bauwens, D. (1992). Habitat selection by the lizard Lacerta lepida in a Mediterranean oak forest. Herpetol. J. 2, 27–30.Google Scholar
Christian, K. A., Tracy, C. R. and Porter, W. P. (1984). Diet, digestion, and food preferences of Galapagos land iguanas. Herpetologica 40, 205–12.Google Scholar
Christian, K. A. and Bedford, G. S. (1995). Seasonal changes in thermoregulation by the frillneck lizard, Chlamydosaurus kingii, in tropical Australia. Ecology 76, 124–32.CrossRefGoogle Scholar
Civantos, E. and Forsman, A. (2000). Determinants of survival in juvenile Psammodromus algirus lizards. Oecologia 124, 64–72.CrossRefGoogle ScholarPubMed
Clobert, J., Massot, M., , L. P. and Rossi, J. M. (2002). Condition-dependent dispersal and ontogeny of the dispersal behaviour: an experimental approach. J. Anim. Ecol. 71, 253–61.Google Scholar
Colli, G. R. and Zamboni, D. S. (1999). Ecology of the worm-lizard Amphisbaena alba in the Cerrado of Central Brazil. Copeia 1999, 733–42.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1994). Prey chemical discrimination, foraging mode, and phylogeny. In Lizard Ecology Historical and Experimental Perspectives, ed. Vitt, L. J. and Pianka, E. R., pp. 95–116. Princeton, NJ: Princeton University Press.Google Scholar
Cooper, W. E. Jr. and Vitt, L. J. (2002). Distribution, extent, and evolution of plant consumption by lizards. J. Zool. Lond. 257, 487–517.CrossRefGoogle Scholar
Cooper, W. E. Jr. and Vitt, L. J. (1994). Tree and substrate selection in the semi-arboreal scincid lizard Eumeces laticeps. Herpetol. J. 4, 20–3.Google Scholar
Cooper, W. E. Jr. and Whiting, M. J. (2000). Ambush and active foraging modes both occur in the Scincid genus Mabuya. Copeia 2000, 112–18.CrossRefGoogle Scholar
Cooper, W. E. Jr., Vitt, L. J., Caldwell, J. P., and Fox, S. F. (2001). Foraging modes of some American lizards: relationships among measurement variables and discreteness of modes. Herpetologica 57, 65–76.Google Scholar
Cooper, W. E. Jr., Whiting, M. J., Wyk, J. H. and Mouton, P. F. N. (1999). Movement- and attack-based indices of foraging mode and ambush foraging in some gekkonid and agamine lizards from southern Africa. Amph.-Rept. 20, 391–9.CrossRefGoogle Scholar
Day, L. B., Crews, D. and Wilczynski, W. (1999). Spatial and reversal learning in congeneric lizards with different foraging strategies. Anim. Behav. 57, 393–407.CrossRefGoogle ScholarPubMed
Davis, J. M. and Stamps, J. A. (2004). The effect of natal experience on habitat preferences. Trends Ecol. Evol. 19, 411–16.CrossRefGoogle ScholarPubMed
Fraipont, M., Clobert, J., John-Alder, H. and Meylan, S. (2000). Increased pre-natal maternal corticosterone promotes philopatry of offspring in common lizards Lacerta vivipara. J. Anim. Ecol. 69, 404–13.CrossRefGoogle Scholar
Dial, B. E. (1978). Aspects of the behavioral ecology of two Chihuahuan desert geckos (Reptilia, Lacertilia, Gekkonidae). J. Herpetol. 12, 209–16.CrossRefGoogle Scholar
Diaz, J. A. and Carrascal, L. M. (1991). Regional distribution of a Mediterranean lizard influence of habitat cues and prey abundance. J. Herpetol. 18, 291–7.Google Scholar
Dooley, J. L. Jr. and Bowers, M. A. (1998). Demographic responses to habitat fragmentation: experimental tests at the landscape and patch scale. Ecology 79, 969–80.CrossRefGoogle Scholar
Doughty, P. and Sinervo, B. (1994). The effects of habitat, time of hatching, and body size on the dispersal of hatchling Uta stansburiana. J. Herpetol. 28, 485–90.CrossRefGoogle Scholar
Downes, S. (2001). Trading heat and food for safety: costs of predator avoidance in a lizard. Ecology 82, 2870–81.CrossRefGoogle Scholar
Downes, S. and Bauwens, D. (2002). An experimental demonstration of direct behavioural interference in two Mediterranean lacertid lizard species. Anim. Behav. 63, 1037–46.CrossRefGoogle Scholar
Downes, S. and Shine, R. (1998). Heat, safety, or solitude? Using habitat selection experiments to identify a lizard's priorities. Anim. Behav. 55, 1387–96.CrossRefGoogle ScholarPubMed
Dunham, A. E., Grant, B. W. and Overall, K. L. (1989). Interfaces between biophysical and physiological ecology and the population ecology of terrestrial vertebrate ectotherms. Physiol. Zool. 62, 335–55.CrossRefGoogle Scholar
Durtsche, R. D. (2000). Ontogenetic plasticity of food habits in the Mexican spiny-tailed iguana, Ctenosaura pectinata. Oecologia 124, 185–95.CrossRefGoogle ScholarPubMed
Durtsche, R. D., Gier, P. J., Fuller, M. M.et al. (1997). Ontogenic variation in the autecology of the greater earless lizard Cophosaurus texanus. Ecography 20, 336–46.CrossRefGoogle Scholar
Eckhardt, R. C. (1979). The adaptive syndromes of two guilds of insectivorous birds in the Colorado Rocky Mountains. Ecol. Monogr. 1979, 129–49.CrossRefGoogle Scholar
Ellinger, N., Schlatte, G., Jerome, N. and Hodl, W. (2001). Habitat use and activity patterns of the neotropical arboreal lizard Tropidurus (Uracentron) azureus werneri (Tropiduridae). J. Herpetol. 35, 395–402.CrossRefGoogle Scholar
Endler, J. A. (1986). Natural Selection in the Wild. Princeton, NJ: Princeton University Press.Google Scholar
Fellers, G. M. and Drost, C. A. (1991). Ecology of the island night lizard, Xantusia riversiana, on Santa Barbara Island, California. Herpetol. Monogr. 5, 28–78.CrossRefGoogle Scholar
Fitch, H. S. (1989). A field study of the slender glass lizard, Ophisaurus attenuatus, in northeastern Kansas. Occ. Pap. Mus. Nat. Hist. Univ. Kansas 125, 1–50.Google Scholar
Franklin, J. F. and Dyrness, C. T. (1988). Natural Vegetation of Oregon and Washington. Corvallis, OR: Oregon State University Press.Google Scholar
Fuentes, E. R. and Cancino, J. (1979). Rock-ground patchiness in a simple Liolaemus lizard community (Reptilia, Lacertilia, Iguanidae). J. Herpetol. 13, 343–50.CrossRefGoogle Scholar
Garland, T. Jr. (1994). Phylogenetic analyses of lizard endurance capacity in relation to body size and body temperature. In Lizard Ecology: Historical and Experimental Perspectives, ed. Vitt, L. J. and Pianka, E. R., pp. 237–59. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Garland, T. Jr. and Losos, J. B. (1994). Ecological morphology of locomotor performance in squamate reptiles. In Ecological Morphology: Integrative Organismal Biology, ed. Wainwright, P. C. and Reilly, S. M., pp. 240–302. Chicago, IL: University of Chicago Press.Google Scholar
Grant, B. W. (1990). Trade-offs in activity time and physiological performance for thermoregulating desert lizards, Sceloporus merriami. Ecology 71, 2323–33.CrossRefGoogle Scholar
Grant, B. W. and Dunham, A. E. (1988). Thermally imposed time constraints on the activity of the desert lizard Sceloporus merriami. Ecology 69, 167–76.CrossRefGoogle Scholar
Grant, B. W. and Dunham, A. E. (1990). Elevational covariation in environmental constraints and life histories of the desert lizard Sceloporus merriami. Ecology 71, 1765–76.CrossRefGoogle Scholar
Grbac, I. and Bauwens, D. (2001). Constraints on temperature regulation in two sympatric Podarcis lizards during autumn. Copeia 2001, 178–86.CrossRefGoogle Scholar
Greeff, J. M. and Whiting, M. J. (2000). Foraging-mode plasticity in the lizard Platysaurus broadleyi. Herpetologica 56, 402–7.Google Scholar
Hager, S. B. (2001). Microhabitat use and activity patterns of Holbrookia maculata and Sceloporus undulatus at White Sands National Monument, New Mexico. J. Herpetol. 35, 326–30.CrossRefGoogle Scholar
Hall, L. S., Krausman, P. R. and Morrison, M. L. (1997). The habitat concept and a plea for standard terminology. Wild. Soc. Bull. 25, 173–82.Google Scholar
Hancock, T. V. and Gleeson, T. T. (2002). Metabolic recovery in the Desert Iguana (Dipsosaurus dorsalis) following activities of varied intensity and duration. Funct. Ecol. 16, 40–8.CrossRefGoogle Scholar
Heatwole, H. (1977). Habitat selection in reptiles. In Biology of Reptilia, vol. 7, ed. Gans, C. and Tinkle, D., pp. 137–55. New York: Academic Press.Google Scholar
Heatwole, H. and Taylor, J. (1985). Ecology of Reptiles. NSW, Australia: Surrey Beatty & Sons.Google Scholar
Herrel, A., Meyers, J. J. and Vanhooydonck, B. (2001). Correlations between habitat use and body shape in a phrynosomatid lizard (Urosaurus ornatus): a population-level analysis. Biol. J. Linn. Soc. 74, 305–14.CrossRefGoogle Scholar
Hetherington, T. E. (1989). Use of vibratory cues for detection of insect prey by the sandswimming lizard Scincus scincus. Anim. Behav. 37, 290–7.CrossRefGoogle Scholar
Higham, T. E., Davenport, M. S. and Jayne, B. C. (2001). Maneuvering in an arboreal habitat: the effects of turning angle on the locomotion of three sympatric ecomorphs of Anolis lizards. J. Exp. Biol. 204, 4141–55.Google Scholar
Hokit, D. G., Stith, B. M. and Branch, L. C. (1999). Effects of landscape structure in Florida scrub: a population perspective. Ecol. Appl. 9, 124–34.CrossRefGoogle Scholar
Howard, R., Williamson, I. and Mather, P. (2003). Structural aspects of microhabitat selection by the skink Lampropholis delicata. J. Herpetol. 37, 613–17.CrossRefGoogle Scholar
Howes, B. J. and Lougheed, S. C. (2004). The importance of cover rock in northern populations of the five-lined skink (Eumeces fasciatus). Herpetologica 60, 287–94.CrossRefGoogle Scholar
Huey, R. B. and Pianka, E. R. (1981). Ecological consequences of foraging mode. Ecology 62, 991–9.CrossRefGoogle Scholar
Huey, R. B., Bennett, A. F., John-Alder, H. and Nagy, K. A. (1984). Locomotor capacity and foraging behavior of Kalahari lacertid lizards. Anim. Behav. 32, 41–50.CrossRefGoogle Scholar
Hutto, R. L. (1985). Habitat selection by nonbreeding, migratory land birds. In Habitat Selection in Birds, ed. Cody, M. L., pp. 455–76. Orlando, FL: Academic Press.Google Scholar
Irschick, D. J. (2003). Measuring performance in nature: implications for studies of fitness within populations. Integr. Comp. Biol. 43, 396–407.CrossRefGoogle ScholarPubMed
Irschick, D. J. and Garland, T. Jr. (2001). Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Annu. Rev. Ecol. Syst. 32, 367–96.CrossRefGoogle Scholar
Irschick, D. J. and Losos, J. B. (1999). Do lizards avoid habitats in which performance is submaximal? The relationship between sprinting capabilities and structural habitat use in Caribbean anoles. Am. Nat. 154, 293–305.CrossRefGoogle ScholarPubMed
Irschick, D. J., Herrell, A., Vanhooydonck, B., Huyghe, K. and Damme, R. (2005). Locomotor compensation creates a mismatch between laboratory and field estimates of escape speed in lizards: a cautionary tale for performance-to-fitness studies. Evolution 59, 1579–87.CrossRefGoogle ScholarPubMed
James, C. D. (1994). Spatial and temporal variation in structure of a diverse lizard assemblage in arid Australia. In Lizard Ecology, ed. Vitt, L. J. and Pianka, E. R., pp. 287–317. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
James, S. E. and M'Closkey, R. T. (2002). Patterns of microhabitat use in a sympatric lizard assemblage. Can. J. Zool. 80, 2226–34.CrossRefGoogle Scholar
Janzen, F. J. and Brodie, E. D. III. (1995). Visually-oriented foraging in a natural population of herbivorous lizards (Ctenosaura similis). J. Herpetol. 29, 132–6.CrossRefGoogle Scholar
Jayne, B. C. and Ellis, R. V. (1998). How inclines affect the escape behaviour of a dune-dwelling lizard, Uma scorpia. Anim. Behav. 55, 1115–30.CrossRefGoogle Scholar
Jenssen, T. A., Marcellini, D. L. and Smith, E. P. (1988). Seasonal micro-distribution of sympatric Anolis lizards in Haiti. J. Herpetol. 22, 226–74.CrossRefGoogle Scholar
Johnson, C. J., Parker,, K. L. and Heard, D. C. (2001). Foraging across a variable landscape: behavioral decisions made by woodland caribou at multiple spatial scales. Oecologia 127, 590–602.CrossRefGoogle ScholarPubMed
Karasov, W. H. and Anderson, R. A. (1984). Interhabitat differences in energy acquisition and expenditure in a lizard. Ecology 65, 235–47.CrossRefGoogle Scholar
Kerr, G. D. and Bull, C. M. (2004). Microhabitat use by the scincid lizard Tiliqua rugosa: exploiting natural temperature gradients beneath plant canopies. J. Herpetol. 38, 436–545.CrossRefGoogle Scholar
Kingsbury, B. A. (1989). Factors influencing activity in Coleonyx variegatus. J. Herpetol. 23, 399–404.CrossRefGoogle Scholar
Knight, T. W. and Morris, D. W. (1996). How many habitats do landscapes contain? Ecology 77, 1756–64.CrossRefGoogle Scholar
Knick, S. T. and Rotenberry, J. T. (2000). Ghosts of habitats past: contribution of landscape change to current habitats used by shrubland birds. Ecology 81, 220–7.CrossRefGoogle Scholar
Koehl, M. A. R. (1996). When does morphology matter? Annu. Rev. Ecol. Syst. 27, 501–42.CrossRefGoogle Scholar
Kohlsdorf, T., James, R. S., Carvalho, J. E.et al. (2004). Locomotor performance of closely related Tropidurus species: relationships with physiological parameters and ecological divergence. J. Exp. Biol. 207, 1183–92.CrossRefGoogle ScholarPubMed
Komers, P. E. (1997). Behavioural plasticity in variable environments. Can. J. Zool. 75, 161–9.CrossRefGoogle Scholar
Kotler, B. P., Brown, J. S., Oldfield, A., Thorson, J. and Cohen, D. (2001). Foraging substrate and escape substrate: patch use by three species of gerbils. Ecology 82, 1781–90.CrossRefGoogle Scholar
Kramer, D. L. and McLaughlin, R. L. (2001). The behavioral ecology of intermittent locomotion. Amer. Zool. 41, 137–53.Google Scholar
Lauder, G. V. (1996). The argument from design. In Adaptation, ed. Rose, M. R. and Lauder, G. V., pp. 55–91. San Diego, CA: Academic Press.Google Scholar
Lena, J. P., Clobert, J., Fraipont, M., Lecomte, J. and Guyot, G. (1998). The relative influence of density and kinship on dispersal in the common lizard. Behav. Ecol. 9, 500–7.CrossRefGoogle Scholar
Lima, S. L. and Dill, L. M. (1990). Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68, 619–40.CrossRefGoogle Scholar
Litvaitis, J. A., Titus, K. and Anderson, E. M. (1994). Measuring vertebrate use of terrestrial habitats and foods. In Research and Management Techniques for Wildlife Habitats, 5th edn., ed. Bookhout, T. A., pp. 254–74. Bethesda, MD: Wildlife Society.Google Scholar
Losos, J. B., Creer, D. A., Glossip, D.et al. (2000). Evolutionary implications of phenotypic plasticity in the hindlimb of the lizard Anolis sagrei. Evolution 54, 301–5.Google ScholarPubMed
Losos, J. B., Marks, J. C. and Schoener, T. W. (1993). Habitat use and ecological interactions of an introduced and a native species of Anolis lizard on Grand Cayman, with a review of outcomes of anole introductions. Oecologia 95, 525–32.CrossRefGoogle Scholar
Losos, J. B., Mouton, P., Bickel, R., Cornelius, I. and Ruddock, L. (2002). The effect of body armature on escape behaviour in cordylid lizards. Anim. Behav. 64, 313–21.CrossRefGoogle Scholar
MacArthur, R. H. and Pianka, E. R. (1966). On optimal use of a patchy environment. Am. Nat. 100, 603–9.CrossRefGoogle Scholar
MacNally, R. C. (1994). On characterizing foraging versatility, illustrated by using birds. Oikos 69, 95–106.Google Scholar
Martin, P. R. and Martin, T. E. (2001). Ecological and fitness consequences of species coexistence: a removal experiment with wood warblers. Ecology 82, 189–206.CrossRefGoogle Scholar
Massot, M., Clobert, J., Chambon, A. and Michalakis, Y. (1994). Vertebrate natal dispersal: the problem of non independence of siblings. Oikos 70, 172–6.CrossRefGoogle Scholar
Massot, M., Huey, R. B., Tsuji, J., and Berkum, F. H. (2003). Genetic, prenatal, and postnatal correlates of dispersal in hatching fence lizards (Sceloporus occidentalis). Behav. Ecol. 14, 650–5.CrossRefGoogle Scholar
Mattingly, W. B. and Jayne, B. C. (2004). Resource use in arboreal habitats: structure affects locomotion of four ecomorphs of Anolis lizards. Ecology 85, 1111–24.CrossRefGoogle Scholar
Mautz, W. J. (1993). Ecology and energetics of the island night lizard, Xantusia riversiana on San Clemente Island. In Recent Advances in California Islands Research, Proceedings of the Third California Islands symposium, ed. Hochberg, F. G., pp. 417–28. Santa Barbara, CA: Santa Barbara Natural History Museum.Google Scholar
Mautz, W. J. and Nagy, K. A. (1987). Ontogenetic changes in diet, field metabolic rate, and water flux in the herbivorous lizard Dipsosaurus dorsalis. Physiol. Zool. 60, 640–58.CrossRefGoogle Scholar
Mautz, W. J., Daniels, C. B. and Bennett, A. F. (1992). Thermal dependence of locomotion and aggression in a xantusiid lizard. Herpetologica 48, 271–9.Google Scholar
M'Closkey, R. T., Hecnar, S. J., Chalcraft, D. and Cotter, J. E. (1998). Size distributions and sex ratios of colonizing lizards. Oecologia 116, 501–9.CrossRefGoogle ScholarPubMed
McCairns, R., Scott, J. and Fox, M. G. (2004). Habitat and home range fidelity in a trophically dimorphic pumpkinseed fish (Lepomis gibbosus) population. Oecologia 140, 271–9.CrossRefGoogle Scholar
McClean, S. A., Rumble, M. A., King, R. M. and Baker, W. L. (1998). Evaluation of resource selection methods with different definitions of availability. J. Wildl. Manag. 62, 793–801.CrossRefGoogle Scholar
McLaughlin, R. L. (1989). Search modes of birds and lizards: evidence for alternative movement patterns. Am. Nat. 133, 654–70.CrossRefGoogle Scholar
Medel, R. G., Marquet, P. A. and Jaksic, F. M. (1988). Microhabitat shifts of lizards under different contexts of sympatry: a case study with South American Liolaemus. Oecologia 76, 567–9.CrossRefGoogle ScholarPubMed
Melville, J. and Swain, R. (2000). Evolutionary relationships between morphology, performance and habitat openness in the lizard genus Niveoscincus (Scincidae: Lygosominae). Biol. J. Linn. Soc. 70, 667–83.Google Scholar
Melville, J. and Swain, R. (2003). Evolutionary correlations between escape behaviour and performance ability in eight species of snow skinks (Niveoscincus: Lygosominae) from Tasmania. J. Zool. Lond. 261, 79–89.CrossRefGoogle Scholar
Miles, D. B. (1994a). Covariation between morphology and locomotory performance in sceloporine lizards. In Lizard Ecology, ed. Vitt, L. J. and Pianka, E. R., pp. 207–35. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Miles, D. B. (1994b). Population differentiation in locomotor performance and the potential response of a terrestrial organism to global environmental change. Amer. Zool. 34, 422–36.CrossRefGoogle Scholar
Misenhelter, M. D. and Rotenberry, J. T. (2000). Choices and consequences of habitat occupancy and nest site selection in sage sparrows. Ecology 81, 2892–901.CrossRefGoogle Scholar
Moermond, T. C. (1981). Prey-attack behavior of Anolis lizards. Z. Tierpsychol. 56, 128–36.CrossRefGoogle Scholar
Morris, D. W. (2003). Toward an ecological synthesis: a case for habitat selection. Oecologia 136, 1–13.CrossRefGoogle ScholarPubMed
Morris, D. W. and Davidson, D. L. (2000). Optimally foraging mice match patch use with habitat differences in fitness. Ecology 81, 2061–6.CrossRefGoogle Scholar
Morrison, M. L., Marcot, B. G. and Mannan, R. W. (1998). Wildlife Habitat Relationships, 2nd edn. Madison, WI: University of Wisconsin Press.Google Scholar
Munger, J. C. (1984). Optimal foraging? Patch use by horned lizards (Iguanidae: Phrynosoma). Am. Nat. 123, 654–80.CrossRefGoogle Scholar
Muth, A. (1977). Body temperatures and associated postures of the zebra-tailed lizard, Callisaurus draconoides. Copeia 1977, 122–5.CrossRefGoogle Scholar
Myers, R. L. and Ewell, J. J. (1990). Ecosystems of Florida. Orlando, FL: University of Central Florida Press.Google Scholar
Mysterud, A. and Ims, R. A. (1998). Functional responses in habitat use: availability influences relative use in trade-off situations. Ecology 79, 1435–41.CrossRefGoogle Scholar
O'Brien, J. W., Browman, H. I. and Evans, B. I. (1990). Search strategies for foraging animals. Am. Scient. 78, 152–9.Google Scholar
Olsson, M., Annica, G., and Tegelsstrom, H. (1997). Determinants of breeding dispersal in the sand lizard, Lacerta agilis, (Reptilia, Squamata). Biol. J. Linn. Soc. 60, 243–56.Google Scholar
Orians, G. H. and Wittenberger, J. F. (1991). Spatial and temporal scales in habitat selection. Am. Nat. 137, S29–S49.CrossRefGoogle Scholar
Patchell, F. C. and Shine, R. (1986). Food habits and reproductive biology of the Australian legless lizard (Pygopodidae). Copeia 1986, 30–9.CrossRefGoogle Scholar
Perry, G. (1999). The evolution of search modes: ecological versus phylogenetic perspectives. Am. Nat. 153, 98–109.CrossRefGoogle ScholarPubMed
Petren, K. and Case, T. J. (1996). An experimental demonstration of exploitation competition in an ongoing invasion. Ecology 77, 118–32.CrossRefGoogle Scholar
Pianka, E. R. (1966). Convexity, desert lizards, and spatial heterogeneity. Ecology 47, 1055–9.CrossRefGoogle Scholar
Pianka, E. R. (1970). Comparative autecology of the lizard Cnemidophorus tigris in different parts of its geographic range. Ecology 51, 703–20.CrossRefGoogle Scholar
Pianka, E. R. (1986). Ecology and Natural History of Desert Lizards. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Pianka, E. R. and Parker, W. S. (1972). Ecology of the iguanid lizard Callisaurus draconoides. Copeia 1972, 493–508.CrossRefGoogle Scholar
Pianka, E. R. and Vitt, L. J. (2003). Lizards: Windows to the Evolution of Diversity. Berkeley and Los Angeles, CA: University of California Press.Google Scholar
Pietruszka, R. D. (1986). Search tactics of desert lizards: how polarized are they? Anim. Behav. 34, 1742–58.CrossRefGoogle Scholar
Pough, F. H. (1980). The advantages of ectothermy for tetrapods. Am. Nat. 115, 92–112.CrossRefGoogle Scholar
Pounds, J. A. (1988). Ecomorphology, locomotion, and microhabitat structure: patterns in a tropical mainland Anolis community. Ecol. Monogr. 58, 299–320.CrossRefGoogle Scholar
Punzo, F. and Madragon, S. (2002). Spatial learning in Australian skinks of the genus Ctenotus (Scincidae). Amph.-Rept. 23, 233–8.Google Scholar
Regal, P. J. (1983). The adaptive zone and behavior of lizards. In Lizard Ecology, ed. Huey, R. B., Pianka, E. R. and Schoener, T.W, pp. 105–18. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Regal, P. J. (1978). Behavioral differences between reptiles and mammals: an analysis of activity and mental capacities. In Behavior and Neurology of Lizards, ed. Greenberg, N. and MacLean, P. D., pp. 183–202. Rockville, MD: National Institute of Mental Health.Google Scholar
Repasky, R. R. and Schluter, D. (1994). Habitat distributions of wintering sparrows along an elevational gradient: tests of food, predation and microhabitat structure hypotheses. J. Anim. Ecol. 63, 569–82.CrossRefGoogle Scholar
Robertson, D. R. (1996). Interspecific competition controls abundance and habitat use of territorial Caribbean damselfishes. Ecology 77, 885–99.CrossRefGoogle Scholar
Robichaud, I. and Villard, M. (1999). Do black-throated green warblers prefer conifers? Meso- and microhabitat use in a mixedwood forest. Condor 101, 262–71.CrossRefGoogle Scholar
Robinson, S. K. and Holmes, R. T. (1982). Foraging behavior of forest birds: the relationships among search tactics, diet, and habitat structure. Ecology 63, 1918–31.CrossRefGoogle Scholar
Ronce, O., Olivieri, I., Clobert, J. and Danchin, E. (2001). Perspectives in the study of dispersal evolution. In Dispersal, ed. Clobert, J., Danchin, E., Dhondt, A. A. and Nichols, J. D., pp. 340–57. Oxford, UK: Oxford University Press.Google Scholar
Rose, E. R. (2004). Foraging behavior in Gambelia wislizenii, the long-nosed leopard lizard, in Harney County, Oregon. Master's thesis, Western Washington University.
Rumble, M. A. and Anderson, S. H. (1996). Microhabitats of Merriam's turkeys in the Black Hills, South Dakota. Ecol. Monogr. 61, 326–34.Google Scholar
Rutherford, P. L. and Gregory, P. T. (2003). Habitat use and movement patterns of northern alligator lizards (Elgaria coerulea) and western skinks (Eumeces skiltonianus) in Southeastern British Columbia. J. Herpetol. 37, 98–106.CrossRefGoogle Scholar
Schlaepfer, M. A, Runge, M. C. and Sherman, P. W. (2002). Ecological and evolutionary traps. Trends Ecol. Evol. 17, 474–80.CrossRefGoogle Scholar
Schwenk, K. and Wagner, G. P. (2001). Function and the evolution of phenotypic stability: connecting pattern to process. Am. Zool. 41, 552–63.Google Scholar
Scott, N. J. Jr., Wilson, D. E., Jones, C. and Andrews, R. M. (1976). The choice of perch dimensions by lizards of the genus Anolis (Reptilia, Lacertilia, Iguanidae). J. Herpetol. 10, 75–84.CrossRefGoogle Scholar
Sergio, F. and Newton, I. (2003). Occupancy as a measure of territory quality. J. Anim. Ecol. 72, 857–65.CrossRefGoogle Scholar
Shaffer, D. T. and Whitford, W. G. (1981). Behavioral responses of a predator, the Round-tailed Horned lizard, Phrynosoma modestum and its prey, honey pot ants, Myrmecocystus spp. Am. Midl. Nat. 105, 209–16.Google Scholar
Shine, R., Bonnet, X., Elphick, M. J. and Barrott, E. G. (2004). A novel foraging mode in snakes: browsing by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae). Funct. Ecol. 18, 16–24.CrossRefGoogle Scholar
Shine, R., Elphick, M. J., and Harlow, P. S. (1997). The influence of natural incubation environments on the phenotypic traits of hatchling lizards. Ecology 78, 2559–68.CrossRefGoogle Scholar
Sih, A., Bell, A., Johnson, J. and Chadwick, J. (2004). Behavioral syndromes: an integrative overview. Quart. Rev. Biol. 79, 241–77.CrossRefGoogle Scholar
Simon, C. A. (1983). A review of lizard chemoreception. In Lizard Ecology, ed. Huey, R. B., Pianka, E. R. and Schoener, T. W., pp. 119–33. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Smith, D. D., Medica, P. A. and Sanborn, S. R. (1987). Ecological comparison of sympatric populations of sand lizards (Cophosaurus texanus and Callisaurus draconoides). Great Basin Nat. 47, 175–85.Google Scholar
Smith, T. and Skúlason, S. (1996). Evolutionary significance of resource polymorphisms in fishes, amphibians, and birds. Annu. Rev. Ecol. Syst. 27, 111–33.CrossRefGoogle Scholar
Spezzano, L. C. Jr. and Jayne, B. C. (2004). The effects of surface diameter and incline on the hindlimb kinematics of an arboreal lizard (Anolis sagrei). J. Exp. Biol. 207, 2115–31.CrossRefGoogle Scholar
Stamps, J. A. (2001). Habitat selection by dispersers: integrating proximate and ultimate approaches. In Dispersal, ed. Clobert, J., Danchin, E., Dhondt, A. A. and Nichols, J. D., pp. 230–42. Oxford, UK: Oxford University Press.Google Scholar
Steffen, J. E. (2002). The ecological correlates of habitat use for the long nose leopard lizard, Gambelia wislizenii, in southeast Oregon. Master's thesis, Western Washington University.
Strijbosch, H. (1988). Habitat selection of Lacerta vivipara in lowland environment. Herpetol. J. 1, 207–10.Google Scholar
Tiebout, H. M. and Anderson, R. A. (2001). Mesocosm experiments on habitat choice by an endemic lizard: implications for timber management. J. Herpetol. 35, 173–85.Google Scholar
Toro, E., Herrel, A. and Irschick, D. (2004). The evolution of jumping performance in Caribbean Anolis lizards: solutions to biochemical trade-offs. Am. Nat. 163, 844–56.CrossRefGoogle Scholar
Damme, R. and Vanhooydonck, B. (2001). Origins of interspecific variation in lizard sprint capacity. Funct. Ecol. 15, 186–202.CrossRefGoogle Scholar
Damme, R., Bauwens, D., and Verheyen, R. F. (1989). Effect of relative clutch mass on sprint speed in the lizard Lacerta vivipara. J. Herpetol. 23, 459–61.CrossRefGoogle Scholar
Damme, R., Bauwens, D. and Verheyen, R. F. (1990). Evolutionary rigidity of thermal physiology: the case of the cool temperate lizard Lacerta vivipara. Oikos 57, 61–7.CrossRefGoogle Scholar
Vanhooydonck, B. and Damme, R. (1999). Evolutionary relationships between body shape and habitat use in lacertid lizards. Evol. Ecol. Res. 1, 785–805.Google Scholar
Vanhooydonck, B. and Damme, R. (2003). Relationships between locomotor performance, microhabitat use and anitpredator behaviour in lacertid lizards. Funct. Ecol. 17, 160–9.CrossRefGoogle Scholar
Vanhooydonck, B., Damme, R., and Aerts, P. (2000). Ecomorphological correlates of habitat partitioning in Corsican lacertid lizards. Funct. Ecol. 14, 358–68.CrossRefGoogle Scholar
Vitt, L. J. (1991). Ecology and life history of the scansorial lizard Plica plica (Iguanidae) in Amazonian Brazil. Can. J. Zool. 69, 504–11.CrossRefGoogle Scholar
Vitt, L. J. and Carvalho, C. M. (1992). Life in the trees: the ecology and life history of Kentropyx striatus (Teiidae) in the lavrado area of Roraima, Brazil. With comments on the life histories of tropical teiid lizards. Can. J. Zool. 70, 1995–2006.CrossRefGoogle Scholar
Vitt, L. J. and Cooper, W. E. Jr. (1986). Foraging and the diet of a diurnal predator (Eumeces laticeps) feeding on hidden prey. J. Herpetol. 20, 408–15.CrossRefGoogle Scholar
Vitt, L. J., Avila-Pires, T. C. S., Zani, P. A., Esposito, M. C. and Sartorius, S. S. (2003a). Life at the interface: ecology of Prionodactylus oshaughnessyi in the western Amazon and comparisons with P. argulus and P. eigenmanni. Can. J. Zool. 81, 302–12.CrossRefGoogle Scholar
Vitt, L. J., Caldwell, J. P., Zani, P. A. and Titus, T. A. (1997a). The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus. Evolution 94, 3828–32.Google Scholar
Vitt, L. J., Pianka, E. R., Cooper, W. E. Jr. and Schwenk, K. (2003b). History and global ecology of squamate reptiles. Am. Nat. 162, 44–60.CrossRefGoogle Scholar
Vitt, L. J., Sartorius, S. S., Avila-Pires, T. C. S., Esposito, M. C. and Miles, D. B. (2000a). Niche segregation among sympatric Amazonian teiid lizards. Oecologia 122, 410–20.CrossRefGoogle Scholar
Vitt, L. J., Souza, R. A., Sartorius, S. S., Avila-Pires, T. C. S. and Esposito, M. C. (2000b). Comparative ecology of sympatric Gonatodes (Squamata: Gekkonidae) in the western Amazon of Brazil. Copeia 2000, 83–95.CrossRefGoogle Scholar
Vitt, L. J., Sels, Loben R. C. and Ohmart, R. D. (1981). Ecological relationships among arboreal desert lizards. Ecology 62, 398–410.CrossRefGoogle Scholar
Vitt, L. J., Zani, P. A., Caldwell, J., Araujo, P. and Magnusson, W. E. (1997b). Ecology of whiptail lizards (Cnemidophorus) in the Amazon region of Brazil. Copeia 1997, 745–57.CrossRefGoogle Scholar
Vitt, L. J., Zani, P. A., Caldwell, J. P. and Durtsche, R. D. (1993). Ecology of the whiptail lizard Cnemidophorus deppii on a tropical beach. Can. J. Zool. 71, 2391–400.CrossRefGoogle Scholar
Vrcibradic, D. and Rocha, C. F. D. (1996). Ecological differences in tropical sympatric skinks (Mabuya macrorhyncha and Mabuya agilis) in southeastern Brazil. J. Herpetol. 30, 60–7.CrossRefGoogle Scholar
Wainwright, P. C., Kraklau, D. M. and Bennett, A. F. (1991). Kinematics of tongue projection in Chamaeleo oustaleti. J. Exp. Biol. 159, 109–33.Google Scholar
Whitford, W. G. and Bryant, M. (1979). Behavior of a predator and its prey: the horned lizard (Phrynosoma cornutum) and harvester ants (Pogonomyrmex). Ecology 60, 686–94.CrossRefGoogle Scholar
Wiens, J. A. (1989). Spatial scaling in ecology. Funct. Ecol. 3, 385–97.CrossRefGoogle Scholar
Yunger, J. A. (2004). Movement and spatial organization of small mammals following vertebrate predator exclusion. Oecologia 139, 647–54.CrossRefGoogle ScholarPubMed
Zaaf, A., Damme, R., Herrel, A. and Aerts, P. (2001). Spatiotemporal gait characteristics of level and vertical locomotion in a ground-dwelling and climbing gecko. J. Exp. Biol. 204, 1233–46.Google Scholar
Zollner, P. A. and Lima, S. L. (1997). Landscape-level perceptual abilities in white-footed mice: perceptual range and the detection of forested habitat. Oikos 80, 51–60.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×