Skip to main content Accessibility help
×
×
Home
  • Online publication date: March 2017

Modified bar recursion and classical dependent choice

from ARTICLES
Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Logic Colloquium '01
  • Online ISBN: 9781316755860
  • Book DOI: https://doi.org/10.1017/9781316755860
Please enter your name
Please enter a valid email address
Who would you like to send this to *
×
[1] J., Avigad and S., Feferman, Gödel's functional (“Dialectica”) interpretation, Handbook of proof theory (S. R., Buss, editor), Studies in Logic and the Foundations of Mathematics, vol. 137, North-Holland, 1998, pp. 337–405.
[2] S., Berardi, M., Bezem, and T., Coquand, On the computational content of the axiom of choice, The Journal of Symbolic Logic, vol. 63 (1998), no. 2, pp. 600–622.
[3] U., Berger, Totale Objekte und Mengen in der Bereichstheorie, Ph.D. thesis, Mathematisches Institut der Universitätünchen, 1990.
[4] U., Berger, W., Buchholz, and H., Schwichtenberg, Refined program extraction from classical proofs, Annals of Pure and Applied Logic, vol. 114 (2002), pp. 3–25.
[5] U., Berger and P., Oliva, Modified bar recursion, BRICS Report Series RS-02-14, BRICS, 2002, 23 pages, http://www.brics.dk/RS/02/14/BRICS-RS-02-14.ps.gz.
[6] U., Berger and H., Schwichtenberg, Program extraction from classical proofs, Logic and Computational Complexity workshop (LCC–94) (D., Leivant, editor), Lecture Notes in Computer Science, vol. 960, Springer, 1995, pp. 77–97.
[7] M., Bezem, Strongly majorizable functionals of finite type: A model for bar recursion containing discontinuous functionals, The Journal of Symbolic Logic, vol. 50 (1985), pp. 652–660.
[8] M., Bezem, Equivalence of bar recursors in the theory of functionals of finite type, Archive for Mathematical Logic, vol. 27 (1988), pp. 149–160.
[9] Y. L., Ershov, Model C of partial continuous functionals, Logic colloquium 1976 (R., Gandy and M., Hyland, editors), North-Holland, 1977, pp. 455–467.
[10] K., Gödel, ü ber eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica, vol. 12 (1958), pp. 280–287.
[11] W. A., Howard, Hereditarily majorizable functionals of finite type, Metamathematical investigation of intuitionistic Arithmetic and Analysis (A. S., Troelstra, editor), Lecture Notes in Mathematics, vol. 344, Springer, 1973, pp. 454–461.
[12] W. A., Howard and G., Kreisel, Transfinite induction and bar induction of types zero and one, and the role of continuity in intuitionistic analysis, The Journal of Symbolic Logic, vol. 31 (1966), no. 3, pp. 325–358.
[13] S. C., Kleene, Countable functionals, Constructivity in mathematics (A., Heyting, editor), North–Holland, 1959, pp. 81–100.
[14] U., Kohlenbach, Theorie der majorisierbaren und stetigen Funktionale und ihre Anwendung bei der Extraktion von Schranken aus inkonstruktiven Beweisen: Effektive Eindeutigkeitsmodule bei besten Approximationen aus ineffektiven Eindeutigkeitsbeweisen, Ph.D. thesis, Frankfurt, 1990.
[15] G., Kreisel, Interpretation of analysis by means of constructive functionals of finite types, Constructivity in mathematics (A., Heyting, editor), North–Holland, 1959, pp. 101–128.
[16] H., Luckhardt, Extensional Gödel functional interpretation—a consistency proof of classical analysis, Lecture Notes inMathematics, vol. 306, Springer, 1973.
[17] D., Normann, The continuous functionals, Handbook of computability theory (E. R., Griffor, editor), North-Holland, 1999, pp. 251–275.
[18] G.D., Plotkin, LCF considered as a programming language, TheoreticalComputer Science, vol. 5 (1977), pp. 223–255.
[19] H., Schwichtenberg, On bar recursion of types 0 and 1, The Journal of Symbolic Logic, vol. 44 (1979), pp. 325–329.
[20] D. S., Scott, Outline of a mathematical theory of computation, 4th annual Princeton conference on Information Sciences and Systems, 1970, pp. 169–176.
[21] A., Simpson, Lazy functional algorithms for exact real functionals, Mathematical foundations of computer science (L., Brim, J., Gruska, and J., Zlatuska, editors), Lecture Notes in Computer Science, vol. 1450, Springer, 1998, pp. 456–464.
[22] C., Spector, Provably recursive functionals of analysis: Aconsistency proof of analysis by an extension of principles in current intuitionistic mathmatics, Recursive function theory: Proceedings of symposia in pure mathematics (F.D.E., Dekker, editor), vol. 5, AmericanMathematical Society, Providence, Rhode Island, 1962, pp. 1–27.
[23] A. S., Troelstra, Metamathematical investigation of intuitionistic Arithmetic and Analysis, Lecture Notes inMathematics, vol. 344, Springer, 1973.
[24] A. S., Troelstra, Realizability, Handbook of proof theory (S. R., Buss, editor), vol. 137, North- Holland, 1998, pp. 408–473.
[25] A. S., Troelstra and D., van Dalen, Constructivism in mathematics. An introduction, Studies in Logic and the Foundations of Mathematics, vol. 121, North-Holland, 1988.