Published online by Cambridge University Press: 05 June 2012
The various lung models we considered in the previous chapter are all composed of collections of discrete elements, each of which is a resistance, an elastance, or a mass. Such models assume that the dissipative, elastic, and inertive properties of the lung are each lumped together in separate physical locations. Accordingly, these models are known as lumped-parameter models. Most models of lung mechanics that have appeared in the literature over the past century or so have been of this form. The main reason for the prevalence of lumped-parameter models is that they are described by tractable, if sometimes algebraically tortuous, ordinary differential equations. Also, we tend to be comfortable with the idea of associating individual constitutive properties with distinct components in a model. This tendency to make lumped-parameter models may be cultural; probably many of us can remember learning elementary physics at school with the aid of demonstrations of things like weights suspended on springs. It may also reflect an innate need for the human mind to compartmentalize phenomena in order to make sense of a complex world. In any case, lumped-parameter models lead to a rather artificial view of the way the world actually works, and it is now time to revise this view with respect to the modeling of lung mechanics.
Genesis of the constant phase model
Our affinity for linear ordinary differential equations instinctively makes us expect to see exponential-type transient responses in nature.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.