Published online by Cambridge University Press: 13 June 2025
In this chapter, we change our viewpoint and focus on how physics can influence machine learning research. In the first part, we review how tools of statistical physics can help to understand key concepts in machine learning such as capacity, generalization, and the dynamics of the learning process. In the second part, we explore yet another direction and try to understand how quantum mechanics and quantum technologies could be used to solve data-driven task. We provide an overview of the field going from quantum machine learning algorithms that can be run on ideal quantum computers to kernel-based and variational approaches that can be run on current noisy intermediate-scale quantum devices.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.