Published online by Cambridge University Press: 05 June 2012
We have thus far been developing the methodology of classical linear regression (CLR) using the ordinary least squares (OLS) system of estimation. This is a very powerful technique for uncovering the relationships among variables. Yet it has its limitations. It is clearly important to understand what these limitations are, to see how they affect the outcomes of the regression, and to suggest some procedures both to identify and to correct for these effects. That is the purpose of this chapter.
The assumptions of the classical linear regression model
The best way to proceed is first to indicate the main criteria that a model must satisfy in order to qualify as a good estimator, that is, to be what the econometricians call the best linear unbiased estimator (BLUE), and then to state the conditions under which OLS methods meet these criteria.
We have previously defined BLUE in §9.2.4 but repeat it here for convenience. In the case of a regression coefficient, b, the mean of its sampling distribution is said to be unbiased if it is equal to the true (unknown) population coefficient, β. If the assumptions underlying an OLS regression model are correct, then the estimates of its regression coefficients satisfy this criterion.
This does not mean that the estimate formed from the particular sample we happen to have will equal the true β; only that the average of all the estimates we would get if we could repeat the sampling process an infinite number of times would do so.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.