Published online by Cambridge University Press: 05 June 2014
When in doubt, differentiate.
Shing-Shen Chern (1979).
Raoul Bott (1982).The idea of a differentiable manifold had its genesis in the nineteenth century with the work of Carl Friedrich Gauss and of Georg Friedrich Bernhard Riemann. Gauss was interested in surveying and cartography, which led him to develop the tools of calculus on curved surfaces. His famous theorema egregium, or remarkable theorem, revealed that one could consider the intrinsic properties of a surface independently of the way in which it was embedded in three-dimensional space, and this led him, Riemann, and others, to abstract these concepts even further. Their ideas have had far reaching applications in many areas of mathematics and the natural sciences.
Roughly, an n-dimensional manifold (or n-manifold) can be thought of as a kind of patchwork quilt built from pieces of ℝn. Classic examples of 2-manifolds are the 2-sphere S2 and the 2-torus T2 (see Figure 3.1). Usually one pictures these as living in ℝ3, but one can consider them in their own right just as bits of ℝ2 sewn together in certain ways. The technical definition of a manifold requires considerable background, which we will try to keep to a minimum. First, we need the idea of a topology.
Basic topology*
Consider a basketball. When it is inflated, its surface is a sphere. But when it is deflated its surface is still a topological sphere.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.