Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-20T04:50:34.106Z Has data issue: false hasContentIssue false

9 - The endogenous cannabinoid system in schizophrenia

Published online by Cambridge University Press:  07 December 2009

Suresh Sundram
Affiliation:
Mental Health Research Institute, Victoria, Australia
Brian Dean
Affiliation:
Mental Health Research Institute, Victoria, Australia
David Copolov
Affiliation:
Mental Health Research Institute, Victoria, Australia
David Castle
Affiliation:
Mental Health Research Institute, Melbourne
Robin Murray
Affiliation:
Institute of Psychiatry, London
Get access

Summary

The human endogenous cannabinoid system is an appealing target in the investigation of schizophrenia. This is both because of clinical studies supporting the association between cannabis use and schizophrenia as well as the capacity of Δ9-tetrahydrocannabinol (Δ9-THC) to induce psychotic symptoms in non-psychotic individuals (see Chapters 3–5). Only since the recent elucidation of the endogenous cannabinoid system have direct investigations into its potential role in schizophrenia and other neuropsychiatric disorders become possible. The endocannabinoid system contains the cannabinoid CB1, CB1A and CB2 receptors; the endogenous cannabinoids (most importantly, anandamide, 2-arachidonylglycerol (2-AG) and palmitoylethanolamide), their respective synthetic and degradative enzymes and a transport process. This chapter provides an overview of the human endogenous cannabinoid system, focusing specifically on those aspects relevant to schizophrenia (see also Chapters 1 and 2 for a broader overview), and then reviews studies concerning this system in schizophrenia.

The human endogenous cannabinoid system

The Cannabinoid CB1 receptor in the brain

The first component of the human endogenous cannabinoid system to be identified was the CB1 receptor (Herkenham et al., 1990). The gene for this receptor is located on region q14–q15 of chromosome 6 (Hoehe et al., 1991) and encodes for a 472-amino-acid protein (Matsuda et al., 1990). This receptor has seven trans-membrane-spanning domains and interacts with guanine nucleotide-binding proteins (G proteins) as part of its signal transduction mechanism, placing it within the superfamily of G protein-coupled receptors.

Type
Chapter
Information
Marijuana and Madness
Psychiatry and Neurobiology
, pp. 127 - 141
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amara, S. G. and Kuhar, M. J. (1993). Neurotransmitter transporters: recent progress. Annu. Rev. Neurosci., 16, 73–93CrossRefGoogle ScholarPubMed
Ameri, A. (1999). The effects of cannabinoids on the brain. Progr. Neurobiol., 58, 315–348CrossRefGoogle Scholar
Beltramo, M., Stella, N., Calignano, A.et al. (1997). Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science, 277, 1094–1097CrossRefGoogle ScholarPubMed
Bisogno, T., Berrendero, F., Ambrosino, G.et al. (1999). Brain regional distribution of endocannabinoids: implications for their biosynthesis and biological function. Biochem. Biophys. Res. Commun., 256, 377–380CrossRefGoogle ScholarPubMed
Bonnin, A., Miguel, R., Castro, J. G., Ramos, J. A. and Fernandez-Ruiz, J. J. (1996). Effects of perinatal exposure to delta 9-tetrahydrocannabinol on the fetal and early postnatal development of tyrosine hydroxylase-containing neurons in rat brain. J. Mol. Neurosci., 7, 291–308CrossRefGoogle ScholarPubMed
Breivogel, C. S., Griffin, G., Di, M. V. and Martin, B. R. (2001). Evidence for a new G protein-coupled cannabinoid receptor in mouse brain. Mol. Pharmacol., 60, 155–163CrossRefGoogle Scholar
Buhler, B., Hambrecht, M., Loffler, W., an, H. W. and Hafner, H. (2002). Precipitation and determination of the onset and course of schizophrenia by substance abuse – a retrospective and prospective study of 232 population-based first illness episodes. Schizophr. Res., 54, 243–251CrossRefGoogle ScholarPubMed
Comings, D. E., Muhleman, D., Gade, R.et al. (1997). Cannabinoid receptor gene (CNR1): association with ⅰ.ⅴ. drug use. Mol. Psychiatry, 2, 161–168CrossRefGoogle ScholarPubMed
Cravatt, B. F., Giang, D. K., Mayfield, S. P.et al. (1996). Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature, 384, 83–87CrossRefGoogle ScholarPubMed
Dawson, E. (1995). Identification of a polymorphic triplet marker for the brain cannabinoid receptor gene: use in linkage and association studies of schizophrenia. Psych. Gen., 5, s50–s51Google Scholar
Dean, B., Sundram, S., Bradbury, R., Scarr, E. and Copolov, D. (2001). Studies on [3H]CP-55940 binding in the human central nervous system: regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use. Neuroscience, 103, 9–15CrossRefGoogle Scholar
Dean, B., Bradbury, R. and Copolov, D. L. (2003). Cannabis-sensitive dopaminergic markers in postmortem CNS: changes in schizophrenia. Biol. Psychiatry, 53, 585–592CrossRefGoogle Scholar
Devane, W. A., Hanus, L., Breuer, A.et al. (1992). Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science, 258, 1946–1949CrossRefGoogle ScholarPubMed
Di Marzo, V., Fontana, A., Cadas, H.et al. (1994). Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature, 372, 686–691CrossRefGoogle ScholarPubMed
Di Marzo, V., Breivogel, C. S., Tao, Q.et al. (2000). Levels, metabolism, and pharmacological activity of anandamide in CB(1) cannabinoid receptor knockout mice: evidence for non-CB(1), non-CB(2) receptor-mediated actions of anandamide in mouse brain. J. Neurochem., 75, 2434–2444CrossRefGoogle Scholar
Dinh, T. P., Carpenter, D., Leslie, F. M.et al. (2002). Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl Acad. Sci. USA, 99, 10819–10824CrossRefGoogle ScholarPubMed
Egertova, M. and Elphick, M. R. (2000). Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB. J. Comp. Neurol., 422, 159–1713.0.CO;2-1>CrossRefGoogle ScholarPubMed
Elphick, M. R. and Egertova, M. (2001). The neurobiology and evolution of cannabinoid signalling. Philos. Trans. R. Soc. Lond. B Biol. Sci., 356, 381–408CrossRefGoogle ScholarPubMed
Emrich, H. M., Leweke, F. M. and Schneider, U. (1997). Towards a cannabinoid hypothesis of schizophrenia: cognitive impairments due to dysregulation of the endogenous cannabinoid system. Pharmacol. Biochem. Behav., 56, 803–807CrossRefGoogle ScholarPubMed
Felder, C. C., Nielsen, A., Briley, E. M.et al. (1996). Isolation and measurement of the endogenous cannabinoid receptor agonist, anandamide, in brain and peripheral tissues of human and rat. FEBS Lett., 393, 231–235CrossRefGoogle ScholarPubMed
Gadzicki, D., Muller-Vahl, K. and Stuhrmann, M. (1999). A frequent polymorphism in the coding exon of the human cannabinoid receptor (CNR1) gene. Mol. Cell Probes, 13, 321–323CrossRefGoogle ScholarPubMed
Giuffrida, A., Parsons, L. H., Kerr, T. M.et al. (1999). Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nature Neurosci., 2, 358–363CrossRefGoogle ScholarPubMed
Glass, M., Faull, R. L. and Dragunow, M. (1993). Loss of cannabinoid receptors in the substantia nigra in Huntington's disease. Neuroscience, 56, 523–527CrossRefGoogle ScholarPubMed
Glass, M., Dragunow, M. and Faull, R. L. (1997). Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the foetal, neonatal and adult human brain. Neuroscience, 77, 299–318CrossRefGoogle Scholar
Glass, M., Dragunow, M. and Faull, R. L. (2000). The pattern of neurodegeneration in Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington's disease. Neuroscience, 97, 505–519CrossRefGoogle ScholarPubMed
Goparaju, S. K., Ueda, N., Yamaguchi, H. and Yamamoto, S. (1998). Anandamide amidohydrolase reacting with 2-arachidonoylglycerol, another cannabinoid receptor ligand. FEBS Lett., 422, 69–73CrossRefGoogle ScholarPubMed
Hambrecht, M. and Hafner, H. (2000). Cannabis, vulnerability, and the onset of schizophrenia: an epidemiological perspective. Aust. NZ J. Psychiatry, 34, 468–475CrossRefGoogle Scholar
Harrison, P. J. (1999). The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain, 122 (Pt 4), 593–624CrossRefGoogle ScholarPubMed
Herkenham, M., Lynn, A. B., Little, M. D.et al. (1990). Cannabinoid receptor localization in brain. Proc. Natl Acad. Sci. USA, 87, 1932–1936CrossRefGoogle ScholarPubMed
Hernandez, M. L., Garcia-Gil, L., Berrendero, F., Ramos, J. A. and Fernandez-Ruiz, J. J. (1997). Delta 9-tetrahydrocannabinol increases activity of tyrosine hydroxylase in cultured fetal mesencephalic neurons. J. Mol. Neurosci., 8, 83–91CrossRefGoogle ScholarPubMed
Hillard, C. J. (2000). Endocannabinoids and vascular function. J. Pharmacol. Exp. Ther., 294, 27–32Google ScholarPubMed
Hoehe, M. R., Caenazzo, L., Martinez, M. M.et al. (1991). Genetic and physical mapping of the human cannabinoid receptor gene to chromosome 6q14–q15. New Biol., 3, 880–885Google ScholarPubMed
Hoffman, A. F. and Lupica, C. R. (2000). Mechanisms of cannabinoid inhibition of GABA(A) synaptic transmission in the hippocampus. J. Neurosci., 20, 2470–2479CrossRefGoogle ScholarPubMed
Howlett, A. C., Barth, F., Bonner, T. I.et al. (2002). International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev., 54, 161–202CrossRefGoogle ScholarPubMed
Khantzian, E. J. (1997). The self-medication hypothesis of substance use disorders: a reconsideration and recent applications. Harvard Rev. Psychiatry, 4, 231–244CrossRefGoogle ScholarPubMed
Leroy, S., Griffon, N., Bourdel, M. C.et al. (2001). Schizophrenia and the cannabinoid receptor type 1 (CB1): association study using a single-base polymorphism in coding exon 1. Am. J. Med. Genet., 105, 749–752CrossRefGoogle ScholarPubMed
Leweke, F. M. (2002). Elevated CSF endocannabinoid levels in schizophrenic patients versus controls. Int. J. Neuropsychopharmacol., 5 [S1], s47Google Scholar
Leweke, F. M., Schneider, U., Thies, M., Munte, T. F. and Emrich, H. M. (1999a). Effects of synthetic delta9-tetrahydrocannabinol on binocular depth inversion of natural and artificial objects in man. Psychopharmacology (Berl.), 142, 230–235CrossRefGoogle Scholar
Leweke, F. M., Giuffrida, A., Wurster, U., Emrich, H. M. and Piomelli, D. (1999b). Elevated endogenous cannabinoids in schizophrenia. Neuroreport, 10, 1665–1669CrossRefGoogle Scholar
Mailleux, P., Parmentier, M. and Vanderhaeghen, J. J. (1992). Distribution of cannabinoid receptor messenger RNA in the human brain: an in situ hybridization histochemistry with oligo-nucleotides. Neurosci. Lett., 143, 200–204CrossRefGoogle Scholar
Matsuda, L. (1997). Molecular aspects of cannabinoid receptors. Crit. Rev. Neurobiol., 11, 143–166CrossRefGoogle ScholarPubMed
Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. and Bonner, T. I. (1990). Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature, 346, 561–564CrossRefGoogle ScholarPubMed
Meltzer, H. Y. and Stahl, S. M. (1976). The dopamine hypothesis of schizophrenia: a review. Schizophr. Bull., 2, 19–76CrossRefGoogle ScholarPubMed
Perlstein, W. M., Carter, C. S., Noll, D. C. and Cohen, J. D. (2001). Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am. J. Psychiatry, 158, 1105–1113CrossRefGoogle Scholar
Pistis, M., Porcu, G., Melis, M., Diana, M. and Gessa, G. L. (2001). Effects of cannabinoids on prefrontal neuronal responses to ventral tegmental area stimulation. Eur. J. Neurosci., 14, 96–102CrossRefGoogle ScholarPubMed
Porter, A. C. and Felder, C. C. (2001). The endocannabinoid nervous system: unique opportunities for therapeutic intervention. Pharmacol. Ther., 90, 45–60CrossRefGoogle ScholarPubMed
Rakhshan, F., Day, T. A., Blakely, R. D. and Barker, E. L. (2000). Carrier-mediated uptake of the endogenous cannabinoid anandamide in RBL- 2H3 cells. J. Pharmacol. Exp. Ther., 292, 960–967Google ScholarPubMed
Sakurai-Yamashita, Y., Kataoka, Y., Fujiwara, M., Mine, K. and Ueki, S. (1989). Delta 9-tetrahydrocannabinol facilitates striatal dopaminergic transmission. Pharmacol. Biochem. Behav., 33, 397–400CrossRefGoogle ScholarPubMed
Schlicker, E. and Kathmann, M. (2001). Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol. Sci., 22, 565–572CrossRefGoogle ScholarPubMed
Schneider, U., Leweke, F. M., Niemcyzk, W.et al. (1996). Impaired binocular depth inversion in patients with alcohol withdrawal. J. Psychiatr. Res., 30, 469–474CrossRefGoogle ScholarPubMed
Schneider, U., Borsutzky, M.et al. (2002). Reduced binocular depth inversion in schizophrenic patients. Schizophr. Res., 53, 101–108CrossRefGoogle ScholarPubMed
Shire, D., Carillon, C., Kaghad, M.et al. (1995). An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing. J. Biol. Chem., 270, 3726–3731CrossRefGoogle ScholarPubMed
Sipe, J. C., Chiang, K., Gerber, A. L., Beutler, E. and Cravatt, B. F. (2002). A missense mutation in human fatty acid amide hydrolase associated with problem drug use. Proc. Natl Acad. Sci. USA, 99, 8394–8399CrossRefGoogle ScholarPubMed
Stella, N., Schweitzer, P. and Piomelli, D. (1997). A second endogenous cannabinoid that modulates long-term potentiation. Nature, 388, 773–778CrossRefGoogle ScholarPubMed
Sundram, S., Bradbury, R., Copolov, D. L. and Dean, B. (2000). Clozapine differentially and reversibly alters cannabinoid CB1 receptor binding in the rat nucleus accumbens. Int. J. Neuropsychopharmacol., 3 [S1], S132Google Scholar
Tsai, S. J., Wang, Y. C. and Hong, C. J. (2000). Association study of a cannabinoid receptor gene (CNR1) polymorphism and schizophrenia. Psychiatr. Genet., 10, 149–151CrossRefGoogle Scholar
Ujike, H., Takaki, M., Nakata, K.et al. (2002). CNR1, central cannabinoid receptor gene, associated with susceptibility to hebephrenic schizophrenia. Mol. Psychiatry, 7, 515–518CrossRefGoogle ScholarPubMed
Voruganti, L. N., Slomka, P., Zabel, P., Mattar, A. and Awad, A. G. (2001). Cannabis induced dopamine release: an in-vivo SPECT study. Psychiatry Res., 107, 173–177CrossRefGoogle Scholar
Westlake, T. M., Howlett, A. C., Bonner, T. I., Matsuda, L. A. and Herkenham, M. (1994). Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer's brains. Neuroscience, 63, 637–652CrossRefGoogle Scholar
Wilson, R. I. and Nicoll, R. A. (2001). Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature, 410, 588–592CrossRefGoogle ScholarPubMed
Wilson, R. I. and Nicoll, R. A. (2002). Endocannabinoid signaling in the brain. Science, 296, 678–682CrossRefGoogle Scholar
Yang, H. Y., Karoum, F., Felder, C.et al. (1999). GC/MS analysis of anandamide and quantification of N-arachidonoylphosphatidylethanolamides in various brain regions, spinal cord, testis, and spleen of the rat. J. Neurochem., 72, 1959–1968CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×