Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T21:43:10.728Z Has data issue: false hasContentIssue false

13 - Mars Exploration Rover Pancam multispectral imaging of rocks, soils, and dust at Gusev crater and Meridiani Planum

from Part III - Mineralogy and Remote Sensing of Rocks, Soil, Dust, and Ices

Published online by Cambridge University Press:  10 December 2009

J. F. Bell III
Affiliation:
Cornell University, Department of Astronomy, 402 Space Sciences Building, Ithaca, NY 14853-6801, USA
W. M. Calvin
Affiliation:
Department of Geological Science, MS 172, University of Nevada Reno, NV 89557-0138, USA
W. H. Farrand
Affiliation:
Space Science Institute 4750 Walnut Street, # 205 Boulder, CO 80301, USA
R. Greeley
Affiliation:
Planetary Geology Group Arizona State University Tempe, AZ 85287-1404, USA
J. R. Johnson
Affiliation:
US Geological Survey Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001-1698, USA
B. Jolliff
Affiliation:
Washington University, Campus Box 1169 One Bookings Drive St Louis, MO 63130, USA
R. V. Morris
Affiliation:
NASA/JSC Code KR, Building 31, Room 120 2101 NASA Road 1 Houston, TX 77058, USA
R. J. Sullivan
Affiliation:
CRSR Cornell University, 308 Space Sciences Building Ithaca, NY 14853, USA
S. Thompson
Affiliation:
Arizona State University, School of Earth and Space Exploration Box 871404 Tempe, AZ 85287, USA
A. Wang
Affiliation:
Department of Earth & Planetary Sciences, Washington University, Campus Box 1196 1 Bookings Drive St Louis, MO 63130-4862, USA
C. Weitz
Affiliation:
Planetary Science Institute, NASA 1700 East Fort Lowell Suite 106 Tuscon, AZ 85719, USA
S. W. Squyres
Affiliation:
Department of Astronomy, Cornell University, 428 Space Sciences Building, Ithaca, NY 14853, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

Multispectral imaging from the Panoramic Camera (Pancam) instruments on the Mars Exploration Rovers (MERs) Spirit and Opportunity has provided important new insights about the geology and geologic history of the rover landing sites and traverse locations in Gusev crater and Meridiani Planum. Pancam observations from near-UV to near-infrared (NIR) wavelengths provide limited compositional and mineralogic constraints on the presence, abundance, and physical properties of ferric- and ferrous-iron–bearing minerals in rocks, soils, and dust at both sites. High-resolution and stereo morphologic observations have also helped to infer some aspects of the composition of these materials at both sites. Perhaps most importantly, Pancam observations were often efficiently and effectively used to discover and select the relatively small number of places where in situ measurements were performed by the rover instruments, thus supporting and enabling the much more quantitative mineralogic discoveries made using elemental chemistry and mineralogy data. This chapter summarizes the major compositionally and mineralogically relevant results at Gusev and Meridiani derived from Pancam observations. Classes of materials encountered in Gusev crater include outcrop rocks, float rocks, cobbles, clasts, soils, dust, rock grindings, rock coatings, windblown drift deposits, and exhumed whitish/yellowish sulfur- and silica-rich soils. Materials studied in Meridiani Planum include sedimentary outcrop rocks, rock rinds, fracture fills, hematite spherules, cobbles, rock fragments, meteorites, soils, and windblown drift deposits. This chapter also previews the results of a number of coordinated observations between Pancam and other rover-based and Mars-orbital instruments that were designed to provide complementary new information and constraints on the mineralogy and physical properties of Martian surface materials.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 281 - 314
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. B., Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system, J. Geophys. Res. 79, 4829–36, 1974.CrossRefGoogle Scholar
Adams, J. B., Smith, M. O., and Johnson, P. E., Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander I site, J. Geophys. Res. 91, 8098–112, 1986.CrossRefGoogle Scholar
Arvidson, R. E., Gooding, J. L., and Moore, H. J., The Martian surface as imaged, sampled, and analyzed by the Viking Landers, Rev. Geophys. 27, 39–60, 1989.CrossRefGoogle Scholar
Arvidson, R. E., Anderson, R. C., Bartlett, P., et al., Localization and physical properties experiments conducted by Spirit at Gusev crater, Science 305, 821–4, 2004.CrossRefGoogle ScholarPubMed
Arvidson, R. E., Squyres, S. W., Anderson, R. C., et al., Overview of the Spirit Mars Exploration Rover mission to Gusev crater: landing site to Backstay rock in the Columbia Hills, J. Geophys. Res. 111, E02S01, doi:10.1029/2005JE002499, 2006a.CrossRefGoogle Scholar
Arvidson, R. E., Poulet, F., Morris, R. V., et al., Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration Rover data sets, J. Geophys. Res. 111, E12S08, doi:10.1029/2006JE002728, 2006b.CrossRefGoogle Scholar
Bandfield, J. L., Glotch, T. D., and Christensen, P. R., Spectroscopic identification of carbonate minerals in the martian dust, Science 301, 1084–7, 2003.CrossRefGoogle ScholarPubMed
Bell III, J. F., Iron, sulfate, carbonate, and hydrated minerals on Mars. In Mineral Spectroscopy: A Tribute to Roger G. Burns (ed. Dyar, M. D., McCammon, C., and Schaefer, M. W.), Special Publication No. 5. St. Louis, MO: Geochemical Society, pp. 359–80, 1996.Google Scholar
Bell, J. F. III, McCord, T. B., and Owensby, P. D., Observational evidence of crystalline iron oxides on Mars, J. Geophys. Res. 95, 14447–61, 1990.CrossRefGoogle Scholar
Bell, J. F. III, McSween, H. Y. Jr., Crisp, J. A., et al., Mineralogic and compositional properties of Martian soil and dust: results from Mars Pathfinder, J. Geophys. Res. 105, 1721–55, 2000.CrossRefGoogle Scholar
Bell, J. F. III, Farrand, W. H., Johnson, J. R., and Morris, R. V., Low abundance materials at the Mars Pathfinder landing site: an investigation using spectral mixture analysis and related techniques, Icarus 158, 56–71, 2002.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Herkenhoff, K. E., et al., The Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation, J. Geophys. Res. 108(E12), doi:10.1029/2003JE002070, 2003.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Spirit rover at Gusev crater, Science 305, 800–6, 2004a.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Opportunity rover at Meridiani Planum, Science 306, 1703–9, 2004b.CrossRefGoogle Scholar
Bell, J. F. III, Savransky, D., and Wolff, M. J., Chromaticity of the Martian sky as observed by the Mars Exploration Rover Pancam instruments, J. Geophys. Res. 111, E12S05, doi:10.1029/2006JE002687, 2006a.CrossRefGoogle Scholar
Bell, J. F. III, Joseph, J., Sohl-Dickstein, J. N., et al., In-flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) Instruments, J. Geophys. Res. 111, E02S03, doi:10.1029/2005JE002444, 2006b.CrossRefGoogle Scholar
Bell, J. F. III, Rice, M. S, Johnson, J. R., and Hare, T. M., Surface albedo observations at Gusev crater and Meridiani Planum, Mars, J. Geophys. Res. doi:10.1029/2007JE002976, in press, 2008.CrossRefGoogle Scholar
Bishop, J. L., Banin, A., Mancinelli, R. L., and Klovstad, M. R., Detection of soluble and fixed NH4+ in clay minerals by DTA and IR reflectance spectroscopy: a potential tool for planetary surface exploration, Planet. Space. Sci. 50, 11–19, 2002.CrossRefGoogle Scholar
Britt, D. T. and Pieters, C. M., Effects of small-scale surface roughness on the bidirectional reflectance spectra of nickel-iron meteorites, Lunar Planet. Sci. Conf. XVIII, 131–2, 1987.Google Scholar
Calvin, W. M., Shoffner, J. D., et al., Hematite spherules at Meridiani: results from MI, Mini-TES and Pancam, submitted toJ. Geophys. Res., 2007.Google Scholar
Carr, M. H., The Surface of Mars, New Haven, CT: Yale University Press, 1981.Google Scholar
Christensen, P. R. and H. J. Moore, The martian surface layer. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 686–729, 1992.Google Scholar
Christensen, P. R., Bandfield, J. L., Clark, R. N., et al., Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: evidence for near-surface water, J. Geophys. Res. 105(E4), 9623–42, 2000.CrossRefGoogle Scholar
Christensen, P. R., Wyatt, M. B., Glotch, T. D., et al., Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity Rover, Science 306, 1733–9, 2004.CrossRefGoogle ScholarPubMed
Clark, B. C., Morris, R. V., McLennan, S. M., et al., Chemistry and mineralogy of outcrops at Meridiani Planum, Earth Planet. Sci. Lett. 240, 73–94, 2005.CrossRefGoogle Scholar
Clark, R. N. and Roush, T. L., Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications, J. Geophys. Res. 89, 6329–40, 1984.CrossRefGoogle Scholar
Cloutis, E. A. and Bell, J. F. III, Mafic silicate mapping on Mars: effects of palagonite, multiple mafic silicates, and spectral resolution, Icarus 172, 233–54, 2003.CrossRefGoogle Scholar
Cloutis, E. A., Gaffey, M. J., Jackowski, T. L., and Reed, K. L., Calibration of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra, J. Geophys. Res. 91, 11641–53, 1986.CrossRefGoogle Scholar
Cloutis, E. A., Hawthorne, F. C., Mertzman, S. A., et al., Detection and discrimination of sulfate minerals using reflectance spectroscopy, Icarus 184, 121–57, 2006.CrossRefGoogle Scholar
Crowley, J. K., Williams, D. E., Hammarstrom, M. J., et al., Spectral reflectance properties (0.4–2.5 µm) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes, Geochemistry: Exploration, Environment, Analysis 3, 219–28, 2003.Google Scholar
Crumpler, L. S., Squyres, S. W., Arvidson, R. E., et al., Mars Exploration Rover geologic traverse by the Spirit rover in the plains of Gusev crater, Mars, Geology 33, 809–12, 2005.CrossRefGoogle Scholar
Crumpler, L. S., T. McCoy, M. Schmidt, and the Athena Science Team, Spirit: observations of very vesicular basalts in the Columbia Hills, Mars and significance for primary lava textures, volatiles, and paleoenviroment (abstract). Lunar Planet. Sci. XXXVIII, 2007.
Farrand, W. H., Bell III, J. F., Johnson, J. R., et al., Spectral variability among rocks in visible and near infrared multispectral Pancam data collected at Gusev crater: examinations using spectral mixture analysis and related techniques, J. Geophys. Res. – Planets 111, E02S15, doi:10.1029/2005JE002495, 2006.CrossRefGoogle Scholar
Farrand, W. H., J. F. Bell III, J. R. Johnson, and D. L. Blaney, Multispectral reflectance of rocks in the Columbia Hills examined by the Mars Exploration Rover Spirit: Cumberland Ridge to Home Plate, Lunar Planet. Sci. Conf. XXXVIII, Abstract #1338, Houston, TX: Lunar and Planetary Institute, 2007a.
Farrand, W. H., Bell III, J. F., Johnson, J. R., et al., Visible and near infrared multispectral analysis of in situ and displaced rocks, Meridiani Planum, Mars by the Mars Exploration Rover Opportunity: spectral properties and stratigraphy, J. Geophys. Res. 112, CiteID E06S02, doi:10.1029/2006JE002773, 2007b.CrossRefGoogle Scholar
Fergason, R. L., Christensen, P. R., Bell, J. F. III, et al., Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES derived thermal inertia, J. Geophys. Res. 111, E02S21, doi:10.1029/2005JE002583, 2006.CrossRefGoogle Scholar
Fischer, E. and Pieters, C., The continuum slope of Mars: bi-directional reflectance investigations and applications to Olympus Mons, Icarus 102, 185–202, 1993.CrossRefGoogle Scholar
Gaffey, M. J., Spectral reflectance characteristics of the meteorite classes, J. Geophys. Res. 81, 905–20, 1976.CrossRefGoogle Scholar
Gellert, R., Rieder, R., Anderson, R. C., et al., Chemistry of rocks and soils in Gusev crater from the Alpha Particle X-ray Spectrometer, Science 305, 829–32, 2004.CrossRefGoogle ScholarPubMed
Gellert, R., Rieder, R., Brückner, J., et al., Alpha particle X-ray spectrometer (APXS): results from Gusev crater and calibration report, J. Geophys. Res. 111, E02S05, doi:10.1029/2005JE002555, 2006.CrossRefGoogle Scholar
Gellert, R., Rieder, R., Anderson, R. C., et al., In-Situ Chemistry along the traverse of Opportunity at Meridiani Planum: Sulfate rich outcrops, iron rich spherules, global soils and various erratics, J. Geophys. Res. submitted, 2008.Google Scholar
Gillespie, A., Kahle, A., and Walker, R., Color enhancement of highly correlated images: I. Decorrelation and HIS contrast enhancement, Rem. Sens. Env. 20, 209–35, 1987.CrossRefGoogle Scholar
Goetz, W., Bertelsen, P., Binau, C. S., et al., Chemistry and mineralogy of atmospheric dust at Gusev crater: indication of dryer periods on Mars, Nature 436, 62–5, 2005.CrossRefGoogle Scholar
Golombek, M. P., Anderson, R. C., Barnes, J. R., et al., Overview of the Mars Pathfinder mission: launch through landing, surface operations, data sets, and science results, J. Geophys. Res. 104, 8523–54, 1999.CrossRefGoogle Scholar
Golombek, M. P., Arvidson, R. E., Bell, J. F. III, et al., Assessment of Mars Exploration Rover landing site predictions, Nature 436, 44–8, 2005.CrossRefGoogle ScholarPubMed
Golombek, M. P., Crumpler, L. S., Grant, J. A., et al., Geology of the Gusev cratered plains from the Spirit rover traverse, J. Geophys. Res. 111, E02S07, doi:10.1029/2005JE002503, 2006.CrossRefGoogle Scholar
Grant, J. A., Arvidson, R., Bell, J. F. III, et al., Surficial deposits at Gusev crater along Spirit Rover traverses, Science 305, 807–10, 2004.CrossRefGoogle ScholarPubMed
Greeley, R. and Iversen, J. D., Wind as a Geological Process, New York: Cambridge University Press, 333pp., 1985.CrossRefGoogle Scholar
Greeley, R., Squyres, S. W., Arvidson, R. E., et al., and the Athena Science Team, Wind-related processes detected by the Spirit Rover at Guzev crater, Mars, Science 305, 810–21, 2004.CrossRefGoogle Scholar
Greeley, R., Arvidson, R., Bell, J. F. III, et al., Martian variable features: new insight from the Mars Express orbiter and the Mars Exploration Rover, Spirit, J. Geophys. Res. 110, doi:10.1029/2005JE002403, 2005.CrossRefGoogle Scholar
Greeley, R., Arvidson, R. E., Barlett, P. W., et al., Gusev crater: wind-related features and processes observed by the Mars Exploration Rover, Spirit, J. Geophys. Res. 111, doi:10.1029/2005JE002491, 2006a.CrossRefGoogle Scholar
Greeley, R., Whelley, P. L., Arvidson, R. E., et al., Active dust devils in Gusev crater, Mars: observations from the Mars Exploration Rover, Spirit, J. Geophys. Res. 111, E12S09, doi:10.1029/2006JE002743, 2006b.CrossRefGoogle Scholar
Grotzinger, J. P., Bell, J. F. III, Calvin, W., et al., Stratigraphy, sedimentology and depositional environment of the Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 11–72, 2005.CrossRefGoogle Scholar
Grotzinger, J., Bell, J. F. III, Herkenhoff, K., et al., Sedimentary textures formed by aqueous processes, Erebus crater, Meridiani Planum, Mars, Geology 34, 1085–8; doi:10.1130/G22985 A.1, 2006.CrossRefGoogle Scholar
Herkenhoff, K. E., Squyres, S. W., Arvidson, R., et al., Textures of the soils and rocks at Gusev crater from Spirit's Microscopic Imager, Science 305, 824–6, 2004.CrossRefGoogle ScholarPubMed
Herkenhoff, K. E., Squyres, S. W., Anderson, R., et al., Overview of the Microscopic Imager investigation during Spirit's first 450 sols in Gusev crater, J. Geophys. Res. 111, E02S04, doi:10.1029/2005JE002574, 2006.CrossRefGoogle Scholar
Huck, F. O., Taylor, G. R., McCall, H. F., and Patterson, W. R., The Viking Mars lander camera, Space Sci. Instrum. 1, 189–241, 1975.Google Scholar
Johnson, D. L., Lunar soil: should this term be used?, Science 160, 1258, 1968.CrossRefGoogle Scholar
Johnson, J. R. and Grundy, W. M., Visible/near-infrared spectra and two-layer modeling of palagonite-coated basalts, Geophys. Res. Lett. 28, 2101–4, 2001.CrossRefGoogle Scholar
Johnson, J. R., Kirk, R., Soderblom, L. A., et al., Photometric properties of materials at the Sagan Memorial Station, Mars, J. Geophys. Res. 104, 8809–30, 1999.CrossRefGoogle Scholar
Johnson, J. R., Grundy, W. M., and Shepard, M. K., Visible/near-infrared spectrogoniometric observations and modeling of dust-coated rocks, Icarus 171, 546–56, 2004.CrossRefGoogle Scholar
Johnson, J. R., Sohl-Dickstein, J., Grundy, W. M., et al., Radiative transfer modeling of dust-coated Pancam calibration target materials: laboratory visible/near-infrared spectrogoniometry, J. Geophys. Res. 111, E12S07, doi:10.1029/2005JE002658, 2006.CrossRefGoogle Scholar
Johnson, J. R., Bell, J. F. III, Cloutis, E. A., et al., Mineralogic constraints on sulfur-rich soils from Pancam spectra at Gusev crater, Mars, Geophys. Res. Lett. 34, L13202, doi:10.1029/2007GL029894, 2007.CrossRefGoogle Scholar
Jolliff, B. L. and McLennan, S. M., Evidence for water at Meridiani, Elements 2, 163–7, 2006.CrossRefGoogle Scholar
Jolliff, B. L. and the Athena Science Team, Composition of Meridiani hematite-rich spherules: a mass-balance mixing-model approach, Lunar Planet. Sci. XXXVI, Abstract #2269, 2005.Google Scholar
Jolliff, B., A. Knoll, W. Farrand, and R. Sullivan, Rock rinds at Meridiani and surface weathering phenomena, American Geophysical Union Fall Meeting, Abstract #P43A-03, 2006a.
Jolliff, B. L., Farrand, W. H., Johnson, J. R., Schröder, C., and Weitz, C. M., Origin of rocks and cobbles on the Meridiani plains as seen by Opportunity, Lunar Planet. Sci. XXXVII, Abstract #2401, 2006b.Google Scholar
Jolliff, B. L., Gellert, R., and Mittlefehldt, D. W., More on the possible composition of the Meridiani hematite-rich concretions, Lunar Planet. Sci. XXXVIII, Abstract #2279, 2007.Google Scholar
Kasting, J. F., Brown, L. L., and Acord, J. M., Was early Mars warmed by ammonia?, Workshop on the Martian Surface and Atmosphere Through Time, Boulder, CO, September 23–25, 1991. Houston, TX: Lunar and Planetary Institute, pp. 84–5, 1992.Google Scholar
Kinch, K. J., Sohl-Dickstein, J., Bell, J. F. III, et al., Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets, J. Geophys. Res. 112, CiteID E06S03, doi:10.1029/2006JE002807, 2007.CrossRefGoogle Scholar
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al., Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer, Science 306, 1740–5, 2004.CrossRefGoogle ScholarPubMed
Knauth, L. P., Burt, D. M., and Wohletz, K. H., Impact origin of sediments at the Opportunity landing site on Mars, Nature 438, 1123–8, 2005.CrossRefGoogle ScholarPubMed
Knoll, A. H., Carr, M., Clark, B., et al., An astrobiological perspective on Meridiani Planum, Earth Planet. Sci. Lett. 240, 179–89, 2005.CrossRefGoogle Scholar
Knoll, A., Jolliff, B. L.,, Farrand, W. H., et al., Rinds and fracture fills at Meridiani Planum, Mars, J. Geophys. Res. 113, doi:10.1029/2007JE002949, 2008.CrossRefGoogle Scholar
Lane, M. D., J. L. Bishop, M. Parente, et al., Determining the chemistry of the bright Paso Robles soils on Mars using multispectral data sets, Workshop on Martian Sulfates as Recorders of Atmospheric-Fluid-Rock Interactions, Houston, Texas. LPI Contribution No. 1331, p. 48, 2006.
Lane, M. D., Bishop, J. L., Dyar, M. D., et al., Identifying the phosphate and ferric sulfate minerals in the Paso Robles Soils (Gusev crater, Mars) using an integrated spectral approach, Lunar Planet. Sci. Conf. XXXVIII, Abstract #1338, 2007.Google Scholar
Lemmon, M. T., Wolff, M. J., Smith, M. D., et al., Atmospheric imaging results from the Mars Exploration Rovers: Spirit and Opportunity, Science 306, 1753–6, 2004.CrossRefGoogle ScholarPubMed
Maki, J. N., Lorre, J. J., Smith, P. H., Brandt, R. D., and Steinwand, D. J., The color of Mars: spectrophotometric measurements at the Pathfinder landing site, J. Geophys. Res. 104, 8781–94, 1999.CrossRefGoogle Scholar
Maki, J. N., Bell, J. F. III, Herkenhoff, K. E., et al., The Mars Exploration Rover Engineering Cameras, J. Geophys. Res. CiteID 8071, doi:10.1029/2003JE002077, 2003.CrossRefGoogle Scholar
Markewitz, D., Soil without life?, Nature 389, 435, 1997.CrossRefGoogle Scholar
Markiewicz, W. J., Sablotny, R. M., Keller, H. U., et al., Optical properties of the Martian aerosols derived from Imager for Mars Pathfinder midday sky brightness data, J. Geophys. Res. 104, 9009–17, 1999.CrossRefGoogle Scholar
McCollom, T. M. and Hynek, B. M., A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars, Nature 438, 1129–31, doi:10.1038/nature04390, 2005.CrossRefGoogle ScholarPubMed
McConnochie, T. H., Bell, J. F. III, Savransky, D., et al., Calibration and in-flight performance of the Mars Odyssey THEMIS Visible Imaging Subsystem (VIS) instrument, J. Geophys. Res. 111, E06018, doi:10.1029/2005JE002568, 2006.CrossRefGoogle Scholar
McLennan, S. M., Bell, J. F. III, Calvin, W. M., et al., Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 95–121, doi:10.1016/j.epsl.2005.09.041, 2005.CrossRefGoogle Scholar
McSween, H. Y., Arvidson, R. E., Bell, J. F. III, et al., Basaltic rocks analyzed by the Spirit Rover in Gusev crater, Science 305, 842–5, 2004.CrossRefGoogle ScholarPubMed
McSween, H. Y., Wyatt, M. B., Gellert, R., et al., Characterization and petrologic interpretation of olivine-rich basalts at Gusev crater, Mars, J. Geophys. Res. 111, E02S10, doi:10.1029/2005JE002477, 2006a.CrossRefGoogle Scholar
McSween, H. Y., Ruff, S. W., Morris, R. V., et al., Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars, J. Geophys. Res. 111, E09S91, doi:10.1029/2006JE002698, 2006b.CrossRefGoogle Scholar
Ming, D. W., Mittlefehldt, D. W., Morris, R. V., et al., Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars, J. Geophys. Res. 111, E02S12, doi:10.1029/2005JE002560, 2006.CrossRefGoogle Scholar
Morris, R., Lauer, H., Lawson, C., et al., Spectral and other physicochemical properties of submicron powders of hematite (αFe2O3), maghemite (γFe2O3), magnetite (Fe3O4), goethite (αFeOOH), and lepidocroicite (γFeOOH), J. Geophys. Res. 90, 3126–44, 1985.CrossRefGoogle Scholar
Morris, R. V., Agresti, D. G., Lauer, H. V. Jr., et al., Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mössbauer studies of superparamagnetic (nanocrystalline) hematite. J. Geophys. Res. 94, 2760–78, 1989.CrossRefGoogle Scholar
Morris, R. V., Golden, D. C., Bell, J. F. III, et al., Possible products of hydrolytic, hydrochloric, and sulfuric weathering at the Mars Pathfinder landing site: evidence from multispectral, elemental, and magnetic data on analogue and meteorite samples, J. Geophys. Res. 105, 1757–817, 2000.CrossRefGoogle Scholar
Morris, R. V., Golden, D. C., Ming, D. W., et al., Phyllosilicate-poor palagonitic dust from Mauna Kea Volcano (Hawaii): a mineralogical analogue for magnetic martian dust?, J. Geophys. Res. 106, 5057–83, 2001.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills, J. Geophys. Res. 111, E02S13, doi:10.1029/2005JE002584, 2006a.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits, J. Geophys. Res. 111, E12S15, doi:10.1029/2006JE002791, 2006b.CrossRefGoogle Scholar
Mustard, J. F. and Bell, J. F. III, New composite reflectance spectra of Mars from 0.4 to 3.14 µm, Geophys. Res. Lett. 21, 353–6, 1994.CrossRefGoogle Scholar
Mustard, J. F. and Pieters, C. M., Quantitative abundance estimates from bidirectional reflectance measurements, J. Geophys. Res. 92, E617–E626, 1987.CrossRefGoogle Scholar
Mutch, T. A., Arvidson, R. E., Head, J. W. III, Jones, K. L., and Saunders, R. S., The Geology of Mars, Princeton, NJ: Princeton University Press, 400pp., 1976.Google Scholar
Nikiforoff, C. C., Reappraisal of the soil, Science 129, 186–96, 1959.CrossRefGoogle ScholarPubMed
Parente, M., Bishop, J. L., and Bell, J. F. III, Spectral unmixing for sulfate identification in Pancam images, Lunar Planet. Sci. Conf. XXXVIII, Abstract #1338, 2007.Google Scholar
Patterson, W. R. III, Huck, F. O., Wall, S. D., and Wolf, M. R., Calibration and performance of the Viking lander cameras, J. Geophys. Res. 82, 4391–400, 1977.CrossRefGoogle Scholar
Pollack, J. B., Colburn, D. S., Flaser, F. M., et al., Properties and effects of dust particles suspended in the Martian atmosphere, J. Geophys. Res. 84, 2929–45, 1979.CrossRefGoogle Scholar
Poulet, F. and Erard, S., Nonlinear spectral mixing: quantitative analysis of laboratory mineral mixtures, J. Geophys. Res. 109, E02009, 2004.CrossRefGoogle Scholar
Retallack, G. J., Life, love and soil, Nature 391, 12, 1998.CrossRefGoogle Scholar
Rieder, R., Gellert, R., Anderson, R. C., et al., Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer, Science 306, 1746–9, 2004.CrossRefGoogle ScholarPubMed
Roush, T. L., D. L. Blaney, and R. B. Singer, The surface composition of Mars as inferred from spectroscopic observations. In Remote Geochemical Analysis: Elemental and Mineralogical Composition (ed. Pieters, C. and Englert, P.), Cambridge: Cambridge University Press, pp. 367–93, 1993.Google Scholar
Ruff, S. W., Spirit's home run: more mineralogical diversity as observed by Mini-TES on the traverse to and arrival at home plate in the Columbia Hills of Gusev crater, Mars, AGU Fall Meeting, Abstract #P44A-04, 2006.
Ruff, S. W., Christensen, P. R., Blaney, D. L., et al., The rocks of Gusev crater as viewed by the Mini-TES instrument, J. Geophys. Res. 111, E12S18, doi:10.1029/2006JE002747, 2006.CrossRefGoogle Scholar
Schneider, A. L., Mittlefehldt, D. W., Gellert, R., and Jolliff, B., Compositional constraints on hematite-rich spherule (blueberry) formation at Meridiani Planum, Mars, Lunar Planet. Sci.XXXVIII, Abstract #1338, 2007.Google Scholar
Sharp, R. P. and Malin, M. C., Surface geology from Viking landers on Mars: a second look, Geol. Soc. Am. Bull. 95, 1398–412, 1984.2.0.CO;2>CrossRefGoogle Scholar
Sherman, D. M., Burns, R. G., and Burns, V. M., Spectral characteristics of the iron oxides with application to the martian bright region mineralogy, J. Geophys. Res. 87, 10169–80, 1982.CrossRefGoogle Scholar
Singer, R. B., Near-infrared spectral reflectance of mineral mixtures: systematic combinations of pyroxenes, olivine, and iron oxides, J. Geophys. Res. 86, 7967–82, 1981.CrossRefGoogle Scholar
Smith, P. H., Tomasko, M. G., Britt, D., et al., The Imager for Mars Pathfinder experiment, J. Geophys. Res. 102, 4003–25, 1997a.CrossRefGoogle Scholar
Smith, P. H., Bell, J. F. III, Bridges, N. T., et al., First results from the Pathfinder camera, Science 278, 1758–65, 1997b.CrossRefGoogle Scholar
Soderblom, L. A. The composition and mineralogy of the martian surface from spectroscopic observations: 0.3–50 µm. In Mars (ed. Kieffer, H.et al.), Tucson: University of Arizona Press, pp. 557–93, 1992.Google Scholar
Soderblom, L. A., Anderson, R. C., Arvidson, R. E., et al., Soils of Eagle crater and Meridiani Planum at the Opportunity Rover landing site, Science 306, 1723–6, 2004.CrossRefGoogle ScholarPubMed
Soil Science Society of America, Glossary of Soil Science Terms, Madison, WI: American Society of Agronomy, 1984.
Squyres, S. W., Arvidson, R. E., Baumgartner, E. T., et al., The Athena Mars Rover science investigation, J. Geophys. Res. 108(E12), 8062, 2003.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Spirit Rover's Athena science investigation at Gusev crater, Mars, Science 305, 794–9, 2004a.CrossRefGoogle Scholar
Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., et al., In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars, Science 306, 1709–14, 2004b.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Blaney, D. L., et al., Rocks of the Columbia Hills, J. Geophys. Res. 111, E02S11, doi:10.1029/2005JE002562, 2006a.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bollen, D., et al., Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle crater to Purgatory Ripple, J. Geophys. Res. 111, E12S12, doi:10.1029/2006JE002771, 2006b.CrossRefGoogle Scholar
Squyres, S. W., Aharonson, O., Arvidson, R. E., et al., Bedrock formation at Meridiani Planum, Nature 443, E1–E2, 2006c.CrossRefGoogle Scholar
Sullivan, R., Banfield, D., Bell, J. F. III, et al., Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site, Nature 436, 58–61, 2005.CrossRefGoogle ScholarPubMed
Thompson, S. D., Calvin, W. M., Farrand, W. H., Johnson, J. R., Bell, J. F. III, and the Athena Science Team, Fine scale multispectral features of sedimentary bedrock structures of Meridiani Planum, Mars, Lunar Planet. Sci. Conf. XXXVII, Abstract #1938, 2006.Google Scholar
Wang, A., Haskin, L. A., Squyres, S. W., et al., Sulfate deposition in subsurface regolith in Gusev crater, Mars, J. Geophys. Res. 111, E02S17, doi:10.1029/2005JE002513, 2006.Google Scholar
Weitz, C. M., Anderson, R. C., Bell, J. F. III, et al., Soil grain analyses at Meridiani Planum, Mars, J. Geophys. Res. 111, E12S04, doi:10.1029/2005JE002541, 2006.CrossRefGoogle Scholar
Wentworth, C. K., A scale of grade and class terms for clastic sediments, J. Geol. 30, 377–92, 1922.CrossRefGoogle Scholar
Wolff, M. J., Smith, M. D., Clancy, R. T., et al., Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES, J. Geophys. Res. 111, E12S17, doi:10.1029/2006JE002786, 2006.CrossRefGoogle Scholar
Yen, A. S., Gellert, R., Schröder, C., et al., An integrated view of the chemistry and mineralogy of martian soils, Nature 436, 49–54, doi:10.1038/nature03637, 2005.CrossRefGoogle ScholarPubMed
Yen, A. S., Mittlefehldt, D. W., McLennan, S. M., et al., Nickel on Mars: constraints on meteoritic material at the surface, J. Geophys. Res. 111, E12S11, doi:10.1029/2006JE002797, 2006.CrossRefGoogle Scholar
Zolotov, M. Y. and Shock, E. L., Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars, Geophys. Res. Lett. 32, L21203, doi:10.129/2005GL024253, 2005.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Mars Exploration Rover Pancam multispectral imaging of rocks, soils, and dust at Gusev crater and Meridiani Planum
    • By J. F. Bell III, Cornell University, Department of Astronomy, 402 Space Sciences Building, Ithaca, NY 14853-6801, USA, W. M. Calvin, Department of Geological Science, MS 172, University of Nevada Reno, NV 89557-0138, USA, W. H. Farrand, Space Science Institute 4750 Walnut Street, # 205 Boulder, CO 80301, USA, R. Greeley, Planetary Geology Group Arizona State University Tempe, AZ 85287-1404, USA, J. R. Johnson, US Geological Survey Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001-1698, USA, B. Jolliff, Washington University, Campus Box 1169 One Bookings Drive St Louis, MO 63130, USA, R. V. Morris, NASA/JSC Code KR, Building 31, Room 120 2101 NASA Road 1 Houston, TX 77058, USA, R. J. Sullivan, CRSR Cornell University, 308 Space Sciences Building Ithaca, NY 14853, USA, S. Thompson, Arizona State University, School of Earth and Space Exploration Box 871404 Tempe, AZ 85287, USA, A. Wang, Department of Earth & Planetary Sciences, Washington University, Campus Box 1196 1 Bookings Drive St Louis, MO 63130-4862, USA, C. Weitz, Planetary Science Institute, NASA 1700 East Fort Lowell Suite 106 Tuscon, AZ 85719, USA, S. W. Squyres, Department of Astronomy, Cornell University, 428 Space Sciences Building, Ithaca, NY 14853, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Mars Exploration Rover Pancam multispectral imaging of rocks, soils, and dust at Gusev crater and Meridiani Planum
    • By J. F. Bell III, Cornell University, Department of Astronomy, 402 Space Sciences Building, Ithaca, NY 14853-6801, USA, W. M. Calvin, Department of Geological Science, MS 172, University of Nevada Reno, NV 89557-0138, USA, W. H. Farrand, Space Science Institute 4750 Walnut Street, # 205 Boulder, CO 80301, USA, R. Greeley, Planetary Geology Group Arizona State University Tempe, AZ 85287-1404, USA, J. R. Johnson, US Geological Survey Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001-1698, USA, B. Jolliff, Washington University, Campus Box 1169 One Bookings Drive St Louis, MO 63130, USA, R. V. Morris, NASA/JSC Code KR, Building 31, Room 120 2101 NASA Road 1 Houston, TX 77058, USA, R. J. Sullivan, CRSR Cornell University, 308 Space Sciences Building Ithaca, NY 14853, USA, S. Thompson, Arizona State University, School of Earth and Space Exploration Box 871404 Tempe, AZ 85287, USA, A. Wang, Department of Earth & Planetary Sciences, Washington University, Campus Box 1196 1 Bookings Drive St Louis, MO 63130-4862, USA, C. Weitz, Planetary Science Institute, NASA 1700 East Fort Lowell Suite 106 Tuscon, AZ 85719, USA, S. W. Squyres, Department of Astronomy, Cornell University, 428 Space Sciences Building, Ithaca, NY 14853, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Mars Exploration Rover Pancam multispectral imaging of rocks, soils, and dust at Gusev crater and Meridiani Planum
    • By J. F. Bell III, Cornell University, Department of Astronomy, 402 Space Sciences Building, Ithaca, NY 14853-6801, USA, W. M. Calvin, Department of Geological Science, MS 172, University of Nevada Reno, NV 89557-0138, USA, W. H. Farrand, Space Science Institute 4750 Walnut Street, # 205 Boulder, CO 80301, USA, R. Greeley, Planetary Geology Group Arizona State University Tempe, AZ 85287-1404, USA, J. R. Johnson, US Geological Survey Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001-1698, USA, B. Jolliff, Washington University, Campus Box 1169 One Bookings Drive St Louis, MO 63130, USA, R. V. Morris, NASA/JSC Code KR, Building 31, Room 120 2101 NASA Road 1 Houston, TX 77058, USA, R. J. Sullivan, CRSR Cornell University, 308 Space Sciences Building Ithaca, NY 14853, USA, S. Thompson, Arizona State University, School of Earth and Space Exploration Box 871404 Tempe, AZ 85287, USA, A. Wang, Department of Earth & Planetary Sciences, Washington University, Campus Box 1196 1 Bookings Drive St Louis, MO 63130-4862, USA, C. Weitz, Planetary Science Institute, NASA 1700 East Fort Lowell Suite 106 Tuscon, AZ 85719, USA, S. W. Squyres, Department of Astronomy, Cornell University, 428 Space Sciences Building, Ithaca, NY 14853, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.014
Available formats
×