Published online by Cambridge University Press: 06 July 2010
Biomechanics of hollow abdominal viscera
Mathematical modelling has greatly increased our ability to gain an understanding of many complex biological phenomena. A model can be treated as a hypothesis that can be accepted or rejected on the basis of its ability to predict the experimentally observed results. Numerical simulation techniques are most powerful when a mathematical model is based on understood individual elements of the biological systems, but where their aggregate behaviour cannot be depicted by current theory. In the absence of unexpected interactions, the input–output relationship can be quite accurately calculated. Experimentally inaccessible and sometimes unexpected interactions can be recovered and evaluated by simple comparison of computed versus experimental results. Such use has made mathematical simulation an indispensable tool in the biosciences.
After decades of experimental optimism, there is increasing recognition of the limitations of the in vivo and in vitro approaches to the study of gastrointestinal function. Possible explanations of these limitations are the size, variable contour and inaccessibility of abdominal viscera and most importantly the fact that existing techniques do not allow us to unravel the multilevel, nonlinear interactions that occur in complex physiological reactions. Today, without employment of the methods of mathematical modelling based on the general principles of computational biology our potential to learn about the complex relationships within the gastrointestinal tract would be totally thwarted.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.