Published online by Cambridge University Press: 06 January 2010
There seem to be at least two important issues for which wavelet-like expansions have already proven to work with great success, namely preconditioning linear systems stemming from Galerkin approximations for elliptic problems and compressing full stiffness matrices arising in connection with integral or pseudodifferential operators, to facilitate nearly optimal complexity algorithms for the solution of the corresponding discrete problems.
Wolfgang Dahmen, et al. Multiscale methods for pseudodifferential equations. Recent Advances in Wavelet Analysis (1994)In the usual FEM setting, Schur complement methods from Chapter 7 perform the best if there is some kind of ‘diagonal’ dominance. This chapter proposes two related and efficient iterative algorithms based on the wavelet formulation for solving an operator equation with conventional arithmetic. In the new wavelet setting, the stiffness matrix possesses the desirable properties suitable for using the Schur complements. The proposed algorithms utilize the Schur complements recursively; they only differ in how to use coarse levels to solve Schur complements equations. In the first algorithm, we precondition a Schur complement by using coarse levels while in the second we use approximate Schur complements to construct a preconditioner. We believe that our algorithms can be adapted to higher dimensional problems more easily than previous work in the subject.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.