Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T15:58:49.353Z Has data issue: false hasContentIssue false

11 - Dynamics of orographic precipitation

Published online by Cambridge University Press:  15 December 2009

Yuh-Lang Lin
Affiliation:
North Carolina State University
Get access

Summary

Orographic influence on climatological distribution of precipitation

Orographic influence on the formation of clouds and its associated precipitation amount and distribution is dramatic. The influence of orography was well recognized very early in human history and documented in numerous meteorological and climatological literatures. When a moist airflow impinges on a mountain, the dynamical and cloud microphysical characteristics of the airflow are modified by orographic lifting and blocking which may modify and/or trigger cloud and precipitation systems in the vicinity of the mountain. Figure 11.1 shows the mean annual precipitation for the period 1971–1990 over Western Europe. Areas of heavy precipitation are concentrated on the Alpine mountains. Note that precipitation over the Alps is produced by weather systems coming from different directions, in particular, from the northern and southern sides.

Over a meso-α/β or large-scale mountain range, precipitation is triggered or enhanced on the windward slope of a prevailing wind due to orographic lifting on the upwind slope. A larger advection time is required for an air parcel to pass over the windward slope compared to the formation time of orographic clouds and precipitation. On the lee side of the mountain, there is little or no rain due to the depletion of moisture over the upwind slope and the adiabatic warming associated with the descending air, known as rain shadow. In short, the overall influence of mountains on climatological precipitation is orographic precipitation enhancement and suppression in the windward and lee sides of mountains, respectively.

Type
Chapter
Information
Mesoscale Dynamics , pp. 442 - 488
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpert, P., 1986. Mesoscale indexing of the distribution of orographic precipitation over high mountains. J. Atmos. Sci., 25, 532–45.Google Scholar
Asencio, N., Stein, J., Chong, M., and Gheusi, F., 2003. Analysis and simulation of local regional conditions for the rainfall over the Lago Maggiore Target Area during MAP IOP 2b. Quart. J. Roy. Meteor. Soc., 129, 565–86.CrossRefGoogle Scholar
Banta, R. M., 1990. The role of mountain flows in making clouds. Atmospheric Processes over Complex Terrain, Blumen, W. (ed.), Meteor. Monogr., 45, Amer. Meteor. Soc., 229–283.Google Scholar
Barcilon, A. and Fitzjarrald, D., 1985. A nonlinear steady model for moist hydrostatic mountain waves. J. Atmos. Sci., 42, 58–67.2.0.CO;2>CrossRefGoogle Scholar
Barcilon, A., Jusem, J. C., and Drazin, P. G., 1979. On the two-dimensional, hydrostatic flow of a stream of moist air over a mountain ridge. Geophys. Astrophys. Fluid Dyn., 12, 1–16.Google Scholar
Barros, A. P. and Kuligowski, R., 1998. Orographic effects during a severe wintertime rainstorm in the Appalachian Mountains. Mon. Wea. Rev., 126, 2648–72.2.0.CO;2>CrossRefGoogle Scholar
Bergeron, T., 1949. The problem of artificial control of rainfall on the globe. II. The coastal orographic maxima of precipitation in autumn and winter. Tellus, 1, 15–32.CrossRefGoogle Scholar
Bougeault, P., Binder, P., Buzzi, A., Dirk, R., Houze, R., Kuettner, J., Smith, R. B., Steinacker, R., and Volkert, H., 2001. The MAP special observing period. Bull. Amer. Meteor. Soc., 82, 433–62.2.3.CO;2>CrossRefGoogle Scholar
Bousquet, O. and Smull, B. F., 2003. Observations and impacts of upstream blocking during a widespread orographic precipitation event. Quart. J. Roy. Meteor. Soc., 129, 391–409.CrossRefGoogle Scholar
Browning, K. A., Hill, F. F., and Pardoe, C. W., 1974. Structure and mechanism of precipitation and the effect of orography in a wintertime warm sector. Quart. J. Roy. Meteor. Soc., 100, 309–30.CrossRefGoogle Scholar
Buzzi, A. and Alberoni, P. P., 1992. Analysis and numerical modeling of a frontal passage associated with thunderstorm development over the Po Valley and the Adriatic Sea. Meteor. Atmos. Phys., 48, 205–24.CrossRefGoogle Scholar
Buzzi, A. and Foschini, L., 2000. Mesoscale meteorological features associated with heavy precipitation in the Southern Alpine region. Meteor. Atmos. Phys., 72, 131–46.CrossRefGoogle Scholar
Buzzi, A., Tartaglione, N., and Malguzzi, P., 1998. Numerical simulations of the 1994 Piemont flood: Role of orography and moist processes. Mon. Wea. Rev., 126, 2369–83.2.0.CO;2>CrossRefGoogle Scholar
Carruthers, D. J. and Choularton, W. T., 1983. A model of the feeder-seeder mechanism of orographic rain including stratification and wind-drift effects. Quart. J. Roy. Meteor. Soc., 109, 575–88.Google Scholar
Chen, C.-S., Chen, W.-S., and Deng, Z., 1991. A study of a mountain-generated precipitation system in northern Taiwan during TAMEX IOP 8. Mon. Wea. Rev., 119, 2574–606.2.0.CO;2>CrossRefGoogle Scholar
Chen, S.-H. and Lin, Y.-L., 2005a. Effects of moist Froude number and CAPE on a conditionally unstable flow over a mesoscale mountain ridge. J. Atmos. Sci., 62, 331–50.CrossRefGoogle Scholar
Chen, S.-H. and Lin, Y.-L., 2005b. Orographic effects on a conditionally unstable flow over an idealized three-dimensional mesoscale mountain. Meteor. Atmos. Phys., 88, 1–21.CrossRefGoogle Scholar
Chiao, S., Lin, Y.-L., and Kaplan, M. L., 2004. Numerical study of the orographic forcing of heavy precipitation during MAP IOP-2B. Mon. Wea. Rev., 132, 2184–203.2.0.CO;2>CrossRefGoogle Scholar
Chu, C.-M. and Lin, Y.-L., 2000. Effects of orography on the generation and propagation of mesoscale convective systems in a two-dimensional conditionally unstable flow. J. Atmos. Sci., 57, 3817–37.2.0.CO;2>CrossRefGoogle Scholar
Colle, B. A., 2004. Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588–606.2.0.CO;2>CrossRefGoogle Scholar
Colle, B. A. and Yuter, S. E., 2007. The impact of coastal boundaries and small hills on the precipitation distribution across southern Connecticut. Mon. Wea. Rev., 135, 933–54.CrossRefGoogle Scholar
Colle, B. A. and Zeng, Y., 2004. Bulk microphysical sensitivities within the MM5 for orographic precipitation. Part I: The Sierra 1986 event. Mon. Wea. Rev., 132, 2780–801.CrossRefGoogle Scholar
Cooper, W. A. and Marwitz, J. D., 1980. Winter storms over the San Juan Mountains. Part III: Seeding potential. J. Appl. Meteor., 19, 942–9.2.0.CO;2>CrossRefGoogle Scholar
Davies, H. C. and Schär, C., 1986. Diabatic modification of airflow over a mesoscale orographic ridge: A model study of the coupled response. Quart. J. Roy. Meteor. Soc., 112, 711–30.CrossRefGoogle Scholar
Doswell, C. A. III, Brooks, H., and Maddox, R., 1996. Flash flood forecasting: An ingredient-based methodology. Wea. Forecasting, 11, 560–81.2.0.CO;2>CrossRefGoogle Scholar
Doswell, C. A. III, Romero, R., and Alonso, S., 1998. A diagnostic study of three heavy precipitation episodes in the western Mediterranean region. Wea. Forecasting, 13, 102–24.2.0.CO;2>CrossRefGoogle Scholar
Durran, D. R. and Klemp, J. B., 1982. The effects of moisture on trapped mountain lee waves. J. Atmos. Sci., 39, 2490–506.2.0.CO;2>CrossRefGoogle Scholar
Espenshade, E. B. Jr., Hudson, J. C., and Morrison, J. L., 1990. Goode's World Atlas. 19th edn., Rand McNally.Google Scholar
Fankhauser, J. C., 1988. Estimates of thunderstorm precipitation efficiency from field measurements in CCOPE. Mon. Wea. Rev., 116, 663–84.2.0.CO;2>CrossRefGoogle Scholar
Ferretti, R., Low-Nam, S., and Rotunno, R., 2000: Numerical simulations of the 1994 Piedmont flood of 4–6 November. Tellus, 52A, 162–80.CrossRefGoogle Scholar
Fraser, A. B., Easter, R. C., and Hobbs, P. V., 1973: A theoretical study of air and fallout of solid precipitation over mountainous terrain: Part I. J. Atmos. Sci., 30, 801–12.2.0.CO;2>CrossRefGoogle Scholar
Frei, C. and Schär, C., 1998. A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int'l J. Clim., 18, 873–900.3.0.CO;2-9>CrossRefGoogle Scholar
Gheusi, F. and Stein, J., 2003. Small-scale rainfall mechanisms for an idealized convective southerly flow. Quart. J. Roy. Meteor. Soc., 129, 1819–40.CrossRefGoogle Scholar
Grossman, R. L. and Durran, D. R., 1984. Interaction of low-level flow with the Western Ghats Mountains and offshore convection in the summer monsoon. Mon. Wea. Rev., 112, 652–72.2.0.CO;2>CrossRefGoogle Scholar
Hobbs, P. V., Easter, R. C., and Fraser, A. B., 1973. A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain: Part II. J. Atmos. Sci., 30, 813–23.2.0.CO;2>CrossRefGoogle Scholar
Hobbs, P. V., Houze, R. Jr., and Matejka, T., 1975. The dynamical and microphysical structure of an occluded frontal system and its modification by orography. J. Atmos. Sci., 32, 1542–62.2.0.CO;2>CrossRefGoogle Scholar
Houze, R. A. Jr. 1993. Cloud Dynamics. Academic Press.Google Scholar
Houze, R. A. and Medina, S., 2005. Turbulence as a mechanism for orographic precipitation enhancement. J. Atmos. Sci., 62, 3599–623.CrossRefGoogle Scholar
Jiang, Q., 2003. Moist dynamics and orographic precipitation. Tellus, 55A, 301–16.CrossRefGoogle Scholar
Jiang, Q. and Smith, R. B., 2003. Cloud timescales and orographic precipitation. J. Atmos. Sci., 60, 1543–59.CrossRefGoogle Scholar
Jou, B. J.-D., 1994. Mountain-originated mesoscale precipitation system in northern Taiwan: A case study 21 June 1991. Terr. Atmos. Ocean, 5, 169–97.CrossRefGoogle Scholar
Kirshbaum, D. J. and Durran, D. R., 2004. Factors governing cellular convection in orographic precipitation. J. Atmos. Sci., 61, 682–98.2.0.CO;2>CrossRefGoogle Scholar
Kuo, J.-T. and Orville, H. D., 1973. A radar climatology of summertime convective clouds in the Black Hills. J. Appl. Meteor., 12, 359–68.2.0.CO;2>CrossRefGoogle Scholar
Lin, Y.-L., 2005. Dynamics of orographic precipitation. 2005 Yearbook of Science & Technology, McGraw Hill, 248–250.Google Scholar
Lin, Y.-L., Chiao, S., Wang, T.-A., Kaplan, M. L., and Weglarz, R. P., 2001. Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633–60.2.0.CO;2>CrossRefGoogle Scholar
Lin, Y.-L., Reeves, H. D., Chen, S.-Y., and Chiao, S., 2005. Formation mechanisms for convection over the Ligurian Sea during MAP IOP-8. Mon. Wea. Rev., 133, 2227–45.CrossRefGoogle Scholar
Massacand, A. C., Wernli, H., and Davies, H. C., 1998. Heavy precipitation on the Alpine southside: An upper-level precursor. Geophys. Res. Lett., 25, 1435–38.CrossRefGoogle Scholar
Medina, S. and Houze, R. A., 2003. Air motions and precipitation growth in Alpine storms. Quart. J. Roy. Meteor. Soc., 129, 345–72.CrossRefGoogle Scholar
Miglietta, M. M. and Buzzi, A., 2001. A numerical study of moist stratified flows over isolated topography. Tellus, 53A, 481–99.CrossRefGoogle Scholar
Miglietta, M. M. and Rotunno, R., 2005. Numerical simulations of moist nearly neutral flow. J. Atmos. Sci., 62, 1410–27.CrossRefGoogle Scholar
Ogura, Y. and Yoshizaki, M., 1988. Numerical study of orographic-convective precipitation over the Eastern Arabian Sea and the Ghats Mountains during the summer monsoon. J. Atmos. Sci., 45, 2097–122.2.0.CO;2>CrossRefGoogle Scholar
Orville, H. D. and Sloan, L. J., 1970. A numerical simulation of the life history of a rainstorm. J. Atmos. Sci., 27, 1148–59.2.0.CO;2>CrossRefGoogle Scholar
Pontrelli, M. D., Bryan, G., and Fritsch, J. M., 1999. The Madison County, Virginia, flash flood of 27 June 1995. Wea. Forecasting, 14, 384–404.2.0.CO;2>CrossRefGoogle Scholar
Purdy, J. C., Austin, G. L., Seed, A. W., and Cluckie, I. D., 2005. Radar evidence of orographic enhancement due to the seeder feeder mechanism. Meteor. Appl., 12, 199–206.CrossRefGoogle Scholar
Ralph, F. M., Neiman, P. J., and Rotunno, R., 2005. Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889–910.CrossRefGoogle Scholar
Rauber, R. M., 1992. Microphysical structure and evolution of a Central Sierra Nevada orographic cloud system. J. Appl. Meteor., 31, 3–24.2.0.CO;2>CrossRefGoogle Scholar
Reeves, H. D. and Lin, Y.-L., 2006. Effect of stable layer formation over the Po Valley on the development of convection during MAP IOP-8. J. Atmos. Sci., 63, 2567–84.CrossRefGoogle Scholar
Richard, E., Cosma, S., Tabary, P., Pinty, J.-P., and Hagen, M., 2003. High-resolution numerical simulations of the convective system observed in the Lago Maggiore area on 17 September 1999 (MAP IOP 2a). Quart. J. Roy. Meteor. Soc., 129, 543–63.CrossRefGoogle Scholar
Rotunno, R. and Ferretti, R., 2001. Mechanisms of intense Alpine rainfall. J. Atmos. Sci., 58, 1732–49.2.0.CO;2>CrossRefGoogle Scholar
Rotunno, R. and Ferretti, R., 2003. Orographic effects on rainfall in MAP cases IOP2B and IOP8. Quart. J. Roy. Meteor. Soc., 129, 373–90.CrossRefGoogle Scholar
Rotunno, R. and Houze, R. A. Jr., 2007. Lessons on orographic precipitation from MAP. Quart. J. Roy. Meteor. Soc., 133, 811–30.CrossRefGoogle Scholar
Sakakibara, H., 1979. Cumulus development on the windward side of a mountain range in convectively unstable air mass. J. Meteor. Soc. Japan, 57, 341–8.CrossRefGoogle Scholar
Sarker, R. P., 1966. A dynamical model of orographic rainfall. Mon. Wea. Rev., 94, 555–72.2.3.CO;2>CrossRefGoogle Scholar
Sawyer, J. S., 1956. The physical and dynamical problems of orographic rain. Weather, 11, 375–81.CrossRefGoogle Scholar
Schneidereit, M., and Schär, C., 2000. Idealised numerical experiments of Alpine flow regimes and southside precipitation events. Meteor. Atmos. Phys., 72, 233–50.CrossRefGoogle Scholar
Seibert, P., 1990. South foehn studies since the ALPEX experiment. Meteor. Atmos. Phys., 43, 91–103.CrossRefGoogle Scholar
Sinclair, M. R., 1993. A diagnostic study of the extratropical precipitation resulting from Tropical Cyclone Bola. Mon. Wea. Rev., 121, 2690–707.2.0.CO;2>CrossRefGoogle Scholar
Sinclair, M. R., 1994. A diagnostic model for estimating orographic precipitation. J. Appl. Meteor., 33, 1163–75.2.0.CO;2>CrossRefGoogle Scholar
Smith, B., II, Y.-L. Lin, and H. D. Reeves, 2006. Effects of cyclone track on precipitation distribution along the California Coastal Range and Sierra Nevada. 12th Conf. Mount. Meteor., Amer. Meteor. Soc., Aug. 28–Sept. 1, Santa Fe, New Mexico.
Smith, R. B., 1979. The influence of mountains on the atmosphere. Adv. in Geophys., 21, 87–230.CrossRefGoogle Scholar
Smith, R. B., 1982. A differential advection model of orographic rain. Mon. Wea. Rev., 110, 306–9.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. B., 2006. Progress on the theory of orographic precipitation. In Tectonics, Climate and Landscape Evolution: Geol. Soc. Amer. Special Paper 398, S. D. Willett et al. (eds.), Penrose Conf. Series, 1–16, doi: 10.1130/2006.2398(01).CrossRef
Smith, R. B. and Barstad, I., 2004. A linear theory of orographic precipitation. J. Atmos. Sci., 61, 1377–91.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. B. and Lin, Y.-L., 1982. The addition of heat to a stratified airstream with application to the dynamics of orographic rain. Quart. J. Roy. Meteor. Soc., 108, 353–78.CrossRefGoogle Scholar
Smith, R. B., Jiang, Q., Fearon, M. G., Tabary, P., Dorninger, M., Doyle, J. D., and Benoit, R., 2003. Orographic precipitation and air mass transformation: An Alpine example. Quart. J. Roy. Meteor. Soc., 129, 433–54.CrossRefGoogle Scholar
Smolarkiewicz, P. K., Rasmussen, R. M., and Clark, T. L., 1988. On the dynamics of Hawaiian Cloud Bands: Island Forcing. J. Atmos. Sci., 45, 1872–905.2.0.CO;2>CrossRefGoogle Scholar
Stein, J., 2004. Exploration of some convective regimes over the Alpine orography. Quart. J. Roy. Meteor. Soc., 130, 481–502.CrossRefGoogle Scholar
Steinacker, R. 2006. Alpiner Föhn – eine neue Strophe zu einem alten Liedin: Atmosphäre und Gebirge – Anregung von ausgeprägten Empfindlichkeiten Promet, 32, 3–10, Deutscher Wetterdienst.
Steiner, M., Bousquet, O., Houze, R. A. Jr., Smull, B. F., and Mancini, M., 2003. Airflow within major Alpine river valleys under heavy rainfall. Quart. J. Roy. Meteor. Soc., 129, 411–32.CrossRefGoogle Scholar
Weissmann, M. D., Mayr, G. J., Banta, R. M., and Gohm, A., 2004. Observations of the temporal evolution and spatial structure of the gap flow in the Wipp Valley on 2 and 3 October 1999. Mon. Wea. Rev., 132, 2684–97.CrossRefGoogle Scholar
White, A. B., Neiman, P. J., Ralph, F. M., and Kingsmill, D. E., 2003. Coastal orographic rainfall processes observed by radar during the California land-falling jets experiment. J. Hydrometeor., 4, 264–82.2.0.CO;2>CrossRefGoogle Scholar
Witcraft, N. C., Lin, Y.-L., and Kuo, Y.-H., 2005. Dynamics of orographic rain associated with the passage of a tropical cyclone over a mesoscale mountain. Terr. Atmos. Ocean, 16, 1133–61.CrossRefGoogle Scholar
Xue, M., Droegemeier, K. K., Wong, V., Shapiro, A., Brewster, K., Carr, F., Weber, D., Liu, Y., and Wang, D.-H., 2001. The Advanced Regional Prediction System (ARPS) – a multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143–65.CrossRefGoogle Scholar
Yeh, H.-C. and Chen, Y.-L., 1998. Characteristics of rainfall distributions over Taiwan during the Taiwan Area Mesoscale Experiment (TAMEX). Mon. Wea. Rev., 37, 1457–69.Google Scholar
Yuter, S. E., and Houze, R. A. Jr., 2003. Microphysical modes of precipitation growth determining by S-band vertically pointing radar in orographic precipitation during MAP. Quart. J. Roy. Meteor. Soc., 129, 455–76.CrossRefGoogle Scholar
Zängle, G., Chimani, B., and Häberli, C., 2004. Numerical simulations of the foehn in the Rhine Valley on 24 October 1999. Mon. Wea. Rev., 132, 368–89.2.0.CO;2>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×