Published online by Cambridge University Press: 15 December 2009
In Chapter 12, we discussed various numerical approximations of the advection equation. However, to simulate a geophysical fluid system, such as the atmosphere and ocean, within a finite region, we need to choose the domain size, grid size, time interval, total integration time, and consider other factors, such as the initial condition and boundary conditions. In addition, when we deal with a real fluid system, the governing equations are much more complicated than the one-dimensional, linear advection equation, as considered in Chapter 12. For example, we have to integrate three-dimensional nonlinear governing equations with several dependent variables, instead of a one-dimensional advection equation with only one variable. When a nonlinear equation is being approximated by numerical methods, one may face new problems, such as nonlinear computational instability and nonlinear aliasing. Special numerical techniques are required to avoid these types of problems. Once optimal approximate forms of the equations are selected, it is still necessary to define the domain and grid structure over which the partial differential equations will be approximated. In this chapter, we will also briefly describe on how to build a basic numerical model based on a set of partial differential equations governing a shallow water system, and a hydrostatic or nonhydrostatic continuously stratified fluid system.
Grid systems and vertical coordinates
The first step in developing a mesoscale numerical model is to determine the appropriate domain size, grid intervals, time interval, and total integration time of the model.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.