Published online by Cambridge University Press: 15 December 2009
Reynolds averaging
In the previous two chapters, we have described numerical methods for approximating the primitive equations and the setup for numerical models, such as grid systems, and initial and boundary conditions. As demonstrated in Section 13.5, a mesoscale model may be developed to simulate a simple geophysical fluid system, such as a stratified, inviscid flow over topography. However, in order to apply this type of geophysical fluid dynamics model to simulate mesoscale atmospheric phenomena, some important physical processes, such as boundary layer processes, moist processes, and radiative transfer processes, need to be represented or parameterized in the model.
In order to numerically integrate the governing differential equations in a limited area, a numerical method, such as a finite difference method, spectral method or finite element method, must be used to approximately represent the atmospheric motion and processes by the dependent variables at grid points or elements. The approximations limit the explicit representation of atmospheric motions and processes to a scale smaller than that for the grid interval, truncated wavelength, or finite element. For example, large-scale disturbances may cascade down to mesoscale, then further down to the smallest turbulent eddies responsible for viscous dissipation in the atmosphere. If the subgrid-scale disturbances are not appropriately represented by the grid point values, they may cause nonlinear aliasing and nonlinear numerical instability, as discussed in Chapter 13.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.