Skip to main content Accessibility help
×
Home
Methods of Statistical Physics
  • Cited by 13
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

This graduate-level textbook on thermal physics covers classical thermodynamics, statistical mechanics and its applications. It describes theoretical methods to calculate thermodynamic properties, such as the equation of state, specific heat, Helmholtz free energy, magnetic susceptibility and phase transitions of macroscopic systems. In addition to the more standard material covered, this book also describes powerful techniques, which are not found elsewhere, to determine the correlation effects on which the thermodynamic properties are based. Particular emphasis is given to the cluster variation method and a novel formulation is developed for its expression in terms of correlation functions. Although a basic knowledge of quantum mechanics is required, the mathematical formulations are accessible and entirely self-contained. The book will therefore constitute an ideal companion text for graduate students studying courses on the theory of complex analysis, classical mechanics, classical electrodynamics, and quantum mechanics.

Reviews

'Each chapter in the book ends with challenging exercises for the student. The mathematics are set out clearly with a type that is clear, in a font that is easily read.'

Source: Contemporary Physics

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.