Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T15:06:29.854Z Has data issue: false hasContentIssue false

9 - Understanding lemurs: future directions in lemur cognition

from Part IV - Closing remarks

Published online by Cambridge University Press:  05 May 2016

Ivan Norscia
Affiliation:
Università degli Studi, Pisa
Elisabetta Palagi
Affiliation:
Università degli Studi, Pisa
Get access

Summary

When we started considering the idea to write this book on lemurs’ behaviour in 2010 we thought of making reference to the relatively few experimental studies on lemur cognition in the introduction, mentioning them as a promising novel branch of investigation for strepsirrhines. But over the past few years the research on the subject has blossomed and many articles have been published on scientific journals, converting the lemur cognition domain in one of the most flourishing fields of investigation of primatology, anthropology and comparative psychology. We realised, then, that we could not dismiss cognitive studies with a couple of paragraphs in the introductory section and we decided to reserve the final chapter to the topic, which probably better than others points towards unexplored lemur potentials and future directions for a more comprehensive understanding of the primate world. In the following pages we try to provide the reader with the basic elements that we think are necessary to understand what is going on when lemurs are tested on cognitive tasks. We suggest that the reader uses this chapter for orientation, as a sort of compass to navigate through the different aspects of lemur cognition. If it is of interest, we invite the reader to consult the original papers to gather further details on the experimental apparatuses and procedures.

Manipulative lemurs? Maybe

In her 1966 Science article, Alison Jolly observed that ‘some prosimians, the social lemurs, have evolved the usual primate type of society and social learning without the capacity to manipulate objects as monkeys do. It thus seems likely that the rudiments of primate society preceded the growth of primate intelligence, made it possible, and determined its nature’.

As primatological studies have advanced, some evidence of tool manipulation ability, a possible precursor of tool use, has been found in lemurs (for a review see Fichtel and Kappeler, 2010; Schilling, 2013). Only few incidents of spontaneous object manipulation have been observed in the wild. The aye-aye (Daubentonia madagascariensis; Figure 9.1) is known for using the probing middle finger for tapping, and extracting nectar, kernels and insects embedded in trees or branches; it can also use the fourth finger for tasks requiring strength, scooping action and deep access (Lhota et al., 2008).

Type
Chapter
Information
The Missing Lemur Link
An Ancestral Step in the Evolution of Human Behaviour
, pp. 247 - 279
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addessi, E. (2003). Ruolo delle influenze sociali sulla neofobia alimentare nel cebo dai cornetti (Cebus apella) e sullo scimpanzé (Pan troglodytes). Ph.D. Thesis, University ‘La Sapienza’, Rome.
Addessi, E. & Rossi, S. (2010). Tokens improve capuchin performance in the reverse–reward contingency task. Proceedings of the Royal Society of London, Series B: Biological Sciences, 278, 849–854.Google Scholar
Addessi, E., Galloway, A. T., Visalberghi, E. & Birch, L. L. (2005). Specific social influences on the acceptance of novel foods in 2–5-year-old children. Appetite, 45, 264–271.Google Scholar
Albiach-Serrano, A., Guillen-Salazar, F. & Call, J. (2007). Mangabeys (Cercocebus torquatus lunulatus) solve the reverse contingency task without a modified procedure. Animal Cognition, 10, 387–396.Google Scholar
Anderson, J. R. (2001). Self- and other-control in squirrel monkeys. In: Matsuzawa, T. (ed.), Primate Origins of Human Cognition and Behavior. Tokyo: Springer-Verlag, pp. 330–347.
Anderson, J. R., Fornasieri, I., Ludes, E., & Roeder, J-J. (1992). Social processes and innovative behaviour in changing groups of Lemur fulvus. Behavioural Processes, 27, 101–112.Google Scholar
Anderson, J. R., Awazu, S. & Fujita, K. (2000). Can squirrel monkeys (Saimiri sciureus) learn self-control? A study using food array selection tests and reverse reward contingency. Journal of Experimental Psychology: Animal Behavior Processes, 26, 87–97.Google Scholar
Anderson, J. R., Hattori, Y. & Fujita, K. (2008). Quality before quantity: rapid learning of reverse-reward contingency by capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 122, 445–448. http://dx.doi.org/10.1037/a0012624.Google Scholar
Barton, R. A. (1999). The evolutionary ecology of the primate brain. In: Lee, P. C. (ed.), Comparative Primate Socioecology. Cambridge University Press, pp. 167–203.
Bond, A. B., Kamil, A. C. & Balda, R. P. (2003). Social complexity and transitive inference in corvids. Animal Behaviour. 65, 479–487.Google Scholar
Boysen, S. T. & Berntson, G. G. (1995). Response to quantity: perceptual versus cognitive mechanisms in chimpanzees (Pan troglodytes). Journal of Experimental Psychology: Animal Behavior Processes, 21, 82–86.Google Scholar
Braeuer, J., Call, J. & Tomasello, M. (2005). All great ape species follow gaze to distant locations and around barriers. Journal of Comparative Psychology, 119, 145–154.Google Scholar
Brannon, E. M. & Terrace, H. S. (2000). Representation of the numerosities 1–9 by rhesus macaques. Journal of Experimental Psychology: Animal Behavior Processes. 26, 31–49.Google Scholar
Burkhart, J. & Heschl, A. (2006). Geometrical gaze following in common marmosets (Callithrix jacchus). Journal of Comparative Psychology, 120, 120–130.Google Scholar
Caldwell, C. A. & Whiten, A. (2007). Social learning in apes and monkeys: cultural animals? In: Campbell, C. J, Fuentes, A., MacKinnon, K. C, Panger, A. & Bearder, S. K (eds), Primates in Perspective. New York, NY: Oxford University Press, pp. 652–663.
Cantlon, J. F. & Brannon, E. M. (2006). Shared system for ordering small and large numbers in monkeys and humans. Psychological Science, 17, 402–407.Google Scholar
Caraco, T. & Lima, S. L. (1985). Foraging juncos – interaction of reward mean and variability. Animal Behaviour, 33, 216–224.Google Scholar
Carlson, S. M., Davis, A. C. & Leach, J. G. (2005). Less is more: executive function and symbolic representation in preschool children. Psychological Science, 16, 609–616.Google Scholar
Cheney, D. L. & Seyfarth, R. M. (1990). How Monkeys See the World: Inside the Mind of Another Species. Chicago: University of Chicago Press, p. 377.
Clayton, D. A. (1978). Socially facilitated behavior. The Quarterly Review of Biology, 53, 373–392.Google Scholar
De Petrillo, F., Ventricelli, M., Ponsi, G. & Addessi, E. (2015). Do tufted capuchin monkeys play the odds? Flexible risk preferences in Sapajus spp. Animal Cognition, 18, 119–130.Google Scholar
Dean, L. G., Hoppitt, W., Laland, K. N. & Kendal, R. L. (2011). Sex ratio affects sex-specific innovation and learning in captive ruffed lemurs (Varecia variegata and Varecia rubra). American Journal of Primatology, 73, 1–12.Google Scholar
Deppe, A. M., Wright, P. C. & Szelistowski, W. A. (2009). Object permanence in lemurs. Animal Cognition, 12, 382–388.Google Scholar
Digby, L. J., Haley, M., Schneider, A. C. & Del Valle, I. (2008). Sensorimotor intelligence in aye-ayes and other lemurs: a puzzle box approach. American Journal of Primatology, 70 (Suppl 1), 54.Google Scholar
Dunbar, R. I. & Shultz, S. (2007). Understanding primate brain evolution. Philosophical Transactions of the Royal Society: Biological Sciences, 362, 649–658.Google Scholar
Emery, N. J., Lorincz, E. N., Perrett, D. I., Oram, M. W. & Baker, C. I. (1997). Gaze following and joint attention in rhesus monkeys (Macaca mulatta). Journal of Comparative Psychology, 111, 286–293.Google Scholar
Feigenson, L., Carey, S. & Hauser, M. D. (2002). The representations underlying infants’ choice of more: object files versus analog magnitudes. Psychological Science, 13, 150–156.Google Scholar
Feigenson, L., Carey, S. & Spelke, E. (2002). Infants’ discrimination of number vs. continuous extent. Cognitive Psychology, 44, 33–66.Google Scholar
Ferrari, P. F., Visalberghi, E., Paukner, A., et al. (2006). Neonatal imitation in rhesus macaques. PLoS Biol., 4(9), e302. http://dx.doi.org/10.1371/journal.pbio.0040302.Google Scholar
Fichtel, C. & Kappeler, P. M. (2010). Human universals and primate symplesiomorphies: establishing the lemur baseline. In: Kappeler, P. M & Silk, J. (eds), Mind the Gap: Tracing the origins of human universals. Heidelberg: Springer, pp. 395–426.
Fichtel, C. & Kappeler, P. M. (2011). Variation in the meaning of alarm calls in Verreaux's and Coquerel's sifakas (Propithecus verreauxi, P. coquereli). International Journal of Primatology, 32, 346–361.Google Scholar
Fornasieri, I., Anderson, J. R. & Roeder, J-J. (1990). Responses to a novel food acquisition task in three species of lemurs. Behavioural Processes, 21, 143–156.Google Scholar
Fragaszy, D. M. & Perry, S. (2003). The Biology of Traditions: Models and Evidence. Cambridge University Press.
Fragaszy, D., Visalberghi, E. & Fedigan, L. (2004). The Complete Capuchin. The Biology of the Genus Cebus. Cambridge University Press, p. 339.
Galef, B. G., Jr. (1992). The question of animal culture. Human Nature, 3, 157–178.Google Scholar
Genty, E., Palmier, C. & Roeder, J. J. (2004). Learning to suppress responses to the larger of two rewards in two species of lemurs, Eulemur fulvus and E. macaco. Animal Behaviour, 67, 925–932.Google Scholar
Genty, E., Chung, P. C. & Roeder, J. J. (2011). Testing brown lemurs (Eulemur fulvus) on the reverse-reward contingency task without a modified procedure. Behavioural Processes, 86, 133–137.Google Scholar
Glady, Y., Genty, É. & Roeder, J-J. (2012). Brown lemurs (Eulemur fulvus) can master the qualitative version of the reverse-reward contingency. PLoS ONE, 7(10), e48378. http://dx.doi.org/10.1371/journal.pone.0048378.Google Scholar
Hauser, M. & Carey, S. (2003). Spontaneous representations of small numbers of objects by rhesus macaques: examinations of content and format. Cognitive Psychology, 47, 367–401.Google Scholar
Hauser, M. D., Carey, S. & Hauser, L. B. (2000). Spontaneous number representation in semi-free-ranging rhesus monkeys. Proceedings of the Royal Society of London, B: Biological Sciences, 267, 829–833.Google Scholar
Hauser, M. D., Tsao, F., Garcia, P. & Spelke, E. S. (2003). Evolutionary foundations of number: spontaneous representation of numerical magnitudes by cotton-top tamarins. Proceedings of the Royal Society of London B: Biological Sciences, 270, 1441–1446.Google Scholar
Hayden, B. Y. & Platt, M. L. (2007). Temporal discounting predicts risk sensitivity in rhesus macaques. Current Biology, 17, 49–53.Google Scholar
Heilbronner, S. F., Rosati, A. G., Stevens, J. R., Hare, B. & Hauser, M. D. (2008). A fruit in the hand or two in the bush? Divergent risk preferences in chimpanzees and bonobos. Biology Letters, 23, 246–249.Google Scholar
Hosey, G. R., Jacques, M. & Pitts, A. (1997). Drinking from tails: social learning of a novel behavior in a group of ring-tailed lemurs (Lemur catta). Primates, 38, 415–422.Google Scholar
Huang, C-T. & Charman, T. (2005). Gradations of emulation learning in infants’ imitation of actions on objects. Journal of Experimental Child Psychology, 92, 276–302.Google Scholar
Huffman, A. M. (1984). Stone-play of Macaca fuscata in Arashiyama B troop: transmission of non-adaptive behaviour. Journal of Human Evolution, 13, 725–735.Google Scholar
Huffman, M. A. (1996). Acquisition of innovative cultural behaviors in nonhuman primates: A case study of SH, a socially transmitted behavior in Japanese macaques. In: Galef, B. G., Jr. & Heyes, C. (eds), Social Learning in Animals: Roots of Culture. San Diego, CA: Academic Press, pp. 267–289.
Huffman, M. A. & Quiatt, D. (1986). Stone handling by Japanese macaques (Macaca fuscata): implications for tool use of stones. Primates, 27, 427–437.Google Scholar
Jacobs, G. H. (2008). Primate color vision: a comparative perspective. Visual Neuroscience, 25, 619–633.Google Scholar
Jolly, A. (1964). Prosimians’ manipulation of simple object problems. Animal Behaviour, 12, 560–570.Google Scholar
Jolly, A. (1966). Lemur social behavior and primate intelligence. Science, 153, 501–506.Google Scholar
Jolly, A. (2004). Lords and Lemurs: Mad Scientists, Kings wth Spears, and the Survival of Diversity in Madagascar. HoughtonMifflin Harcourt.
Jones, S. M. & Brannon, E. M. (2012). Prosimian primates show ratio dependence in spontaneous quantity discriminations. Frontiers in Psychology, 3, 550.Google Scholar
Jones, S. M., Pearson, J., DeWind, N. K., et al. (2014). Lemurs and macaques show similar numerical sensitivity. Animal Cognition, 17, 503–515.Google Scholar
Judge, P. G., Evans, T. A. & Vyas, D. K. (2005). Ordinal representation of numeric quantities by brown capuchin monkeys (Cebus apella). Journal of Experimental Psychology: Animal Behavior Processes, 31, 79–94.Google Scholar
Kacelnik, A. & Bateson, M. (1996). Risky theories – The effects of variance on foraging decisions. American Zoologist, 36, 402–434.Google Scholar
Kalenscher, T. and van Wingerden, M. (2011). Why we should use animals to study economic decision making – a perspective. Frontiers in Neuroscience, 5, 82.Google Scholar
Kappeler, P. M. (1987). The acquisition process of a novel behavior pattern in a group of ring-tailed lemurs (Lemur catta). Primates, 28, 225–228.Google Scholar
Kendal, R. L., Custance, D. M., Kendal, J. R., et al. (2010). Evidence for social learning in wild lemurs (Lemur catta). Learning & Behavior, 38, 220–234.Google Scholar
Koechlin, E. (1997). Numerical transformations in five-month-old human infants. Mathematical Cognition, 3, 89–104.Google Scholar
Kralik, J. D., Hauser, M. D. & Zimlicki, R. (2002). The relationship between problem solving and inhibitory control: Cotton-top tamarins (Saguinus oedipus) performance on a reversed contingency task. Journal of Comparative Psychology, 116, 39–50.Google Scholar
Kudo, H. & Dunbar, R. I. M. (2001). Neocortex size and social network size in primates. Animal Behaviour, 62, 711–722.Google Scholar
Kummer, H. (1995). In Quest of the Sacred Baboon. Princeton, NJ: Princeton University Press.
Kummer, H. & Goodall, J. (1985). Conditions of innovative behaviour in primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 308, 203–214.Google Scholar
Kuznar, L. (2001). Risk sensitivity and value among Andean pastoralists: Measures, models, and empirical tests. Current Anthropology, 42, 432–440.Google Scholar
Leca, J. B., Gunst, N. & Huffman, M. A. (2007). Japanese macaque cultures: inter-and intra-troop behavioural variability of stone handling patterns across 10 troops. Behaviour, 144, 251–281.Google Scholar
Leca, J. B., Gunst, N. & Huffman, M. A. (2010). Indirect social influence in the maintenance of the stone-handling tradition in Japanese macaques, Macaca fuscata. Animal Behaviour, 79, 117–126.Google Scholar
Lewis, K. P., Jaffe, S. & Brannon, E. M. (2005). Analog number representations in mongoose lemurs (Eulemur mongoz): evidence from a search task. Animal Cognition, 8, 247–252.Google Scholar
Lhota, S., Jůnek, T., Bartoš, L. & Kuběna, A. A. (2008). Specialized use of two fingers in free-ranging aye-ayes (Daubentonia madagascariensis). American Journal of Primatology, 70, 786–795.Google Scholar
Limongelli, L., Boysen, S. T. & Visalberghi, E. (1995). Comprehension of cause-effect relations in a tool-using task by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 109, 18.Google Scholar
MacLean, E. L., Merritt, D. J. & Brannon, E. M. (2008). Social organization predicts transitive reasoning in prosimian primates. Animal Behaviour, 76, 479–486.Google Scholar
MacLean, E. L., Matthews, L. J., Hare, B. A., et al. (2012). How does cognition evolve? Phylogenetic comparative psychology. Animal Cognition, 15, 223–238.Google Scholar
MacLean, E. L., Sandel, A. A., Bray, J.et al. (2013). Group size predicts social but not nonsocial cognition in lemurs. PLoS ONE, 8, e66359.Google Scholar
MacLean, E. L., Hare, B., Nunn, C. L., et al. (2014). The evolution of self-control. PNAS, 111, E2140–2148.Google Scholar
Mallavarapu, S., Perdue, B. M., Stoinski, T. S. & Maple, T. L. (2013). Can black-and-white ruffed lemurs (Varecia variegata) solve object permanence tasks?American Journal of Primatology, 75, 376–386.Google Scholar
Merritt, D., MacLean, E. L., Jaffe, S. & Brannon, E. M. (2007). A comparative analysis of serial ordering in ring-tailed lemurs (Lemur catta). Journal of Comparative Psychology, 121, 363–371.Google Scholar
Merritt, D. J., MacLean, E. L., Crawford, J. C. & Brannon, E. M. (2011). Numerical rule-learning in ring-tailed lemurs (Lemur catta). Frontiers in Psychology, 2, 23.Google Scholar
Mertl-Millhollen, A. S. (2000). Tradition in Lemur catta behavior at Berenty Reserve, Madagascar. International Journal of Primatology, 21, 287–297.Google Scholar
Mischel, W., Shoda, Y. & Rodriguez, M. I. (1989). Delay of gratification in children. Science, 244, 933–938.Google Scholar
Murray, E. A., Kralik, J. D. & Wise, S. P. (2005). Learning to inhibit prepotent responses: successful performance by rhesus macaques, Macaca mulatta, on the reversed-contingency task. Animal Behaviour, 69, 991–998.Google Scholar
Neiworth, J. J., Burman, M. A., Basile, B. M. & Lickteig, M. T. (2002). Use of experimenter-given cues in visual co-orienting and in an object-choice task by a New World monkey species, cotton top tamarins (Saguinus oedipus). Journal of Comparative Psychology, 116, 3–11.Google Scholar
O'Mara, M. T. & Hickey, C. M. (2012). Social influences on the development of ringtailed lemur feeding ecology. Animal Behaviour, 84(6), 1547–1555.Google Scholar
Parker, C. E. (1973). Manipulatory behavior and responsiveness. Gibbon and Siamang, 2, 185–207.Google Scholar
Read, D. (2004). Intertemporal choice. In: Koehler, D. J. & Harvey, N. (eds), Blackwell Handbook of Judgement and Decision Making, pp. 424–443.
Real, L., Ott, J. & Silverfine, E. (1982). On the tradeoff between the mean and the variance in foraging: effect of spatial distribution and color preference. Ecology, 63, 1617–1623.Google Scholar
Rieskamp, J., Busemeyer, J. R. & Mellers, B. A. (2006). Extending the bounds of rationality: evidence and theories of preferential choice. Journal of Economic Literature, 44, 631–661.Google Scholar
Rosati, A. G. & Hare, B. (2011). Chimpanzees and bonobos distinguish between risk and ambiguity. Biology Letters, 7, 15–18.Google Scholar
Rosati, A. G., Rodriguez, K. & Hare, B. (2014). The ecology of spatial memory in four lemur species. Animal Cognition,17, 1–15.Google Scholar
Ruiz, A., Gómez, J. C., Roeder, J. J. & Byrne, R. W. (2009). Gaze following and gaze priming in lemurs. Animal Cognition, 12, 427–434.Google Scholar
Sandel, A. A., MacLean, E. & Hare, B. (2011). Evidence from four lemur species that ringtailed lemur social cognition converges with that of haplorhine primates. Animal Behaviour, 81, 925–931.Google Scholar
Santos, L. R., Mahajan, N. & Barnes, J. L. (2005a) How prosimian primates represent tools: Experiments with two lemur species (Eulemur fulvus and Lemur catta). Journal of Comparative Psychology, 119, 394–403.Google Scholar
Santos, L. R., Barnes, J. L. & Mahajan, N. (2005b). Expectations about numerical events in four lemur species (Eulemur fulvus, Eulemur mongoz, Lemur catta and Varecia rubra). Animal Cognition, 8, 253–262.Google Scholar
Schilling, A. (2013). Cognitive capacities of captive gray mouse lemurs as evidenced by object manipulation. In: Masters, J., Gamba, M. & Génin, F. (eds), Leaping Ahead. New York: Springer, pp. 331–340.
Schnoell, A. V. & Fichtel, C. (2012). Wild redfronted lemurs (Eulemur rufifrons) use social information to learn new foraging techniques. Animal Cognition, 15, 505–516.Google Scholar
Schnoell, A. V. & Fichtel, C. (2013). A novel feeding behaviour in wild redfronted lemurs (Eulemur rufifrons): depletion of spider nests. Primates, 54, 371–375.Google Scholar
Schnoell, A. V., Dittmann, M. T. & Fichtel, C. (2014). Human-introduced long-term traditions in wild redfronted lemurs?Animal Cognition, 17, 45–54.Google Scholar
Schwitzer, C., Mittermeier, R. A., Johnson, S. E., et al. (2014). Averting lemur extinctions amid Madagascar's political crisis. Science, 343, 842–843.Google Scholar
Shepherd, S. V. & Platt, M. L. (2008). Spontaneous social orienting and gaze following in ringtailed lemurs (Lemur catta). Animal Cognition, 11, 13–20.Google Scholar
Shumaker, R. W., Palkovich, A. M., Beck, B. B., Guagnano, G. A. & Morowitz, H. (2001). Spontaneous use of magnitude discrimination and ordination by the orangutan (Pongo pygmaeus). Journal of Comparative Psychology, 115, 385–391.Google Scholar
Siegler, R. S. (1986). Children's Thinking. Englewood-Cliffs, NJ: Prentice-Hall.
Silberberg, A. & Fujita, K. (1996). Pointing at smaller food amounts in an analogue of Boysen and Berntson's (1995) procedure. Journal of the Experimental Analysis of Behavior, 66, 143–147.Google Scholar
Simon, T. J., Hespos, S. J. & Rochat, P. (1995). Do infants understand simple arithmetic? A replication of Wynn (1992). Cognitive Development, 10, 253–269.Google Scholar
Smith, B. R., Piel, A. K. & Candland, D. K. (2002). The numerical abilities of a socially-housed Hamadryas Baboon (Papio hamadryas) and Squirrel Monkey (Saimiri sciureus). Abstracts of the Psychonomic Society, 545, 81.Google Scholar
Spence, K. W. (1937). Experimental studies of learning and higher mental processes in infra-human primates. Psychological Bulletin, 34, 806–850.Google Scholar
Stevens, J. R. & Mühlhoff, N. (2012). Intertemporal choice in lemurs. Behavioural Processes, 89, 121–127.Google Scholar
Stevens, J. R., Hallinan, E. V. & Hauser, M. D. (2005). The ecology and evolution of patience in two New World monkeys. Biology Letters, 1, 223–226.Google Scholar
Stevens, R., De Waegenaere, A. & Melenberg, B. (2010). Longevity risk in pension annuities with exchange options: The effect of product design. Insurance: Mathematics and Economics, 46, 222–234.Google Scholar
Stoinski, T. S., Drayton, L. A. & Price, E. E. (2011). Evidence of social learning in black-and-white ruffed lemurs (Varecia variegata). Biology Letters, 7, 376–379.Google Scholar
Tattersall, I. (1982). The Primates of Madagascar.New York: Columbia University Press.
Thorpe, W. H. (1963). Learning and Instinct in Animals, 2nd edition. London: Methuen.
Tomasello, M. (1996). Do apes ape? In: Heyes, C. & Galef, B. (eds), Social Learning in Animals: The Roots of Culture. Academic Press, pp. 319–346.
Tomasello, M. & Call, J. (1997). Primate Cognition. New York: Oxford University Press.
Tomasello, M., Call, J. & Hare, B. (1998). Five primate species follow the visual gaze of conspecifics. Animal Behaviour, 55, 1063–1069.Google Scholar
Uher, J. & Call, J. (2008). How the great apes (Pan troglodytes, Pongo pygmaeus, Pan paniscus, Gorilla gorilla) perform on the reversed reward contingency task II: transfer to new quantities, long-term retention, and the impact of quantity ratios. Journal of Comparative Psychology, 122, 204–212.Google Scholar
Uller, C., Hauser, M. & Carey, S. (2001). Spontaneous representation of number in cotton-top tamarins (Saguinus oedipus). Journal of Comparative Psychology, 115, 248–257.Google Scholar
van Schaik, C. P. & Burkart, J. M. (2011). Social learning and evolution: the cultural intelligence hypothesis. Philosophical Transactions of the Royal Society Series B, 366, 1008–1016.Google Scholar
Visalberghi, E. & Addessi, E. (2000). Seeing group members eating a familiar food affects the acceptance of novel foods in capuchin monkeys, Cebus apella. Animal Behaviour, 60, 69–76.Google Scholar
Visalberghi, E. & Addessi, E. (2001). Acceptance of novel foods in Cebus apella: do specific social facilitation and visual stimulus enhancement play a role?Animal Behaviour, 62, 567–576.Google Scholar
Visalberghi, E. & Fragaszy, D. (1990). Do monkeys ape? In: Parker, S. & Gibson, K. (eds), ‘Language’ and Intelligence in Monkeys and Apes, Cambridge University Press, pp. 247–275.
Visalberghi, E. & Fragaszy, D. (1995). The behavior of capuchin monkeys (Cebus apella) with food: the role of social context. Animal Behaviour, 49, 1089–1095.Google Scholar
Visalberghi, E. & Fragaszy, D. (2002). Do monkeys ape?’ Ten years after. In: Dautenhahn, K. and Nehaniv, C. L. (eds), Imitation in Animals and Artifacts. Cambridge, MA: MIT Press, pp. 471–499.
Visalberghi, E. & Limongelli, L. (1994). Lack of comprehension of cause-effect relations in tool-using capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 108, 15–22.Google Scholar
Visalberghi, E., Sabbatini, G., Stammati, M. & Addessi, E. (2003). Preferences towards novel foods in Cebus apella: the role of nutrients and social influences. Physiology and Behavior, 80, 341–349.Google Scholar
Visalberghi, E., Addessi, E., Spagnoletti, N., et al. (2009). Selection of effective stone tools by wild capuchin monkeys. Current Biology, 19, 213–217.Google Scholar
von Neumann, J. & Morgenstern, O. (1944). Game Theory and Economic Behavior. Princeton: Princeton University.
Wright, P. C. (1999). Lemur traits and Madagascar ecology: coping with an island environment. American Journal of Physical Anthropology, 110(s29), 31–72.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×