Published online by Cambridge University Press: 05 June 2014
A large number of problems in mobile robotics can be reduced to a few basic problem formulations. Most problems reduce to some mixture of optimizing something, solving simultaneous linear or nonlinear equations, or integrating differential equations. Well-known numerical methods exist for all of these problems and all are accessible as black boxes in both software applications and general purpose toolboxes. Of course offline toolboxes cannot be used to control a system in real time and almost any solution benefits from exploiting the nature of the problem, so it is still very common to implement numerical algorithms from scratch for many real time systems.
The techniques described in this section will be referenced in many future places in the text. These techniques will be used to compute wheel velocities, invert dynamic models, generate trajectories, track features in an image, construct globally consistent maps, identify dynamic models, calibrate cameras, and so on.
Linearization and Optimization of Functions of Vectors
Perhaps paradoxically, linearization is the fundamental process that enables us to deal with nonlinear functions. The topics of linearization and optimization are closely linked because a local optimum of a function coincides with special properties of its linear approximation.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.