Published online by Cambridge University Press: 05 June 2012
The truth conditions for modal sentences in minimal models are a generalization of those in chapter 3. Possible worlds continue to figure in the semantic analysis of necessity and possibility, but the meanings of modal sentences are given a much simpler account. A necessitation □A is said to be true at a possible world just in case the proposition expressed by A is in a certain but very general sense necessary with respect to the world; and ◇A is true at a world if and only if the proposition expressed by A is, in a corresponding sense, possible. The resulting notion of validity is such that far fewer principles hold generally on this account than did in chapter 3.
In section 7.1 we set out the definition of a minimal model, state the truth conditions of modal sentences, and prove the basic theorem about validity in classes of minimal models. In section 7.2 we examine M, C, and N from the standpoint of minimal models and define some key concepts for the treatment of certain logics involving these schemas. Section 7.3 contains a theorem to the effect that standard models can be identified with minimal models of a special kind. Section 7.4 briefly describes conditions on minimal models sufficient for the validation of the schemas D, T, B, 4, and 5.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.