Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-15T08:33:12.799Z Has data issue: false hasContentIssue false

7 - Classical equilibrium statistical mechanics

from Part III - Atomistic foundations of continuum concepts

Published online by Cambridge University Press:  05 June 2012

Ellad B. Tadmor
Affiliation:
University of Minnesota
Ronald E. Miller
Affiliation:
Carleton University, Ottawa
Get access

Summary

Statistical mechanics provides a bridge between the atomistic world and continuum models. It capitalizes on the fact that continuum variables represent averages over huge numbers of atoms. But why is such a connection necessary? The theory of continuum mechanics is an incredibly successful theory; its application is responsible for most of the engineered world that surrounds us in our daily lives. This fact, combined with the internal consistency of continuum mechanics, has led some of its proponents to adopt the view that there is no need to attempt to connect this theory with more “fundamental” models of nature. (See, for example, the discussion of Truesdell and Toupin's view on this in Section 2.2.1.) However, there are a number of reasons why making such a connection is important.

First, continuum mechanics is not a complete theory since in the end there are more unknowns than the number of equations provided by the basic physical principles. To close the theory it is necessary to import external “constitutive relations” that in engineering applications are obtained by fitting functional forms to experimental measurements of materials. Continuum mechanics places constraints on these functional forms (see Section 2.5) but it cannot be used to derive them. A similar state of affairs exists for failure criteria, such as fracture and plasticity, which are add-ons to the theory. There is a strong emphasis in modern engineering to go beyond the phenomenology of classical continuum mechanics to a theory that can also predict the material constitutive response and failure.

Type
Chapter
Information
Modeling Materials
Continuum, Atomistic and Multiscale Techniques
, pp. 377 - 439
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×