Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-15T02:39:19.958Z Has data issue: false hasContentIssue false

2 - Essential continuum mechanics and thermodynamics

from Part I - Continuum mechanics and thermodynamics

Published online by Cambridge University Press:  05 June 2012

Ellad B. Tadmor
Affiliation:
University of Minnesota
Ronald E. Miller
Affiliation:
Carleton University, Ottawa
Get access

Summary

A solid material subjected to mechanical and thermal loading will change shape and develop internal stresses. What is the best way to describe this? In principle, the behavior of a material (neglecting relativistic effects) is dictated by that of its atoms, which are governed by quantum mechanics. Therefore, if we could solve Schrödinger's equation (see Chapter 4) for 1023 atoms and evolve the dynamics of the electrons and nuclei over “macroscopic times” (i.e. seconds, hours and days) we would be able to predict material behavior. Of course when we say “material,” we are already referring to a very complex system as demonstrated in the previous chapter. In order to predict the response of the material we would first have to construct its structure in the computer, which would require us to use Schrödinger's equation to simulate the process by which it was manufactured. Conceptually, it is useful to think of materials in this way, but we can quickly see the futility of the approach; state-of-the-art quantum calculations involve mere hundreds of atoms over a time of nanoseconds.

At the other extreme to quantum mechanics lie continuum mechanics and thermodynamics. These disciplines completely ignore the discreteness of the world, treating it in terms of “macroscopic observables,” time and space averages over the underlying swirling masses of atoms. This leads to a theory couched in terms of continuously varying fields. Using clear thinking inspired by experiments it is possible to construct a remarkably coherent and predictive framework for material behavior.

Type
Chapter
Information
Modeling Materials
Continuum, Atomistic and Multiscale Techniques
, pp. 21 - 112
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×