Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-21T01:42:15.351Z Has data issue: false hasContentIssue false

Introduction: Defining quantum gravity

Published online by Cambridge University Press:  04 August 2010

Thomas Thiemann
Affiliation:
Max-Planck-Institut für Gravitationsphysik, Germany
Get access

Summary

In the first section of this chapter we explain why the problem of quantum gravity cannot be ignored in present-day physics, even though the available accelerator energies lie way beyond the Planck scale. Then we define what a quantum theory of gravity and all interactions is widely expected to achieve and point out the two main directions of research divided into the perturbative and non-perturbative approaches. In the third section we describe these approaches in more detail and finally in the fourth motivate our choice of canonical quantum general relativity as opposed to other approaches.

Why quantum gravity in the twenty-first century?

It is often argued that quantum gravity is not relevant for the physics of this century because in our most powerful accelerator, the LHC to be working in 2007, we obtain energies of the order of a few 103 GeV while the energy scale at which quantum gravity is believed to become important is the Planck energy of 1019 GeV. While that is true, it is false that nature does not equip us with particles of energies much beyond the TeV scale; we have already observed astrophysical particles with energy of up to 1013 GeV, only six orders of magnitude away from the Planck scale. It thus makes sense to erect future particle microscopes not on the surface of the Earth any more, but in its orbit. As we will sketch in this book, even with TeV energy scales one might speculate about quantum gravity effects in the close future with γ-ray burst physics and the GLAST detector.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×