Skip to main content Accessibility help
×
Hostname: page-component-76c49bb84f-lvrpm Total loading time: 0 Render date: 2025-07-11T06:51:29.002Z Has data issue: false hasContentIssue false

Hyperbolic Geometry, Nehari's Theorem, Electric Circuits, and Analog Signal Processing

Published online by Cambridge University Press:  25 June 2025

Daniel N. Rockmore
Affiliation:
Dartmouth College, New Hampshire
Dennis M. Healy, Jr
Affiliation:
University of Maryland, College Park
Get access

Summary

Underlying many of the current mathematical opportunities in digital signal processing are unsolved analog signal processing problems. For instance, digital signals for communication or sensing must map into an analog format for transmission through a physical layer. In this layer we meet a canonical example of analog signal processing: the electrical engineer's impedance matching problem. Impedance matching is the design of analog signal processing circuits to minimize loss and distortion as the signal moves from its source into the propagation medium. This paper works the matching problem from theory to sampled data, exploiting links between H theory, hyperbolic geometry, and matching circuits. We apply J. W. Helton's significant extensions of operator theory, convex analysis, and optimization theory to demonstrate new approaches and research opportunities in this fundamental problem.

1. The Impedance Matching Problem

Figure 1 shows a twin-whip HF (high-frequency) antenna mounted on a superstructure representative of a shipboard environment. If a signal generator is connected directly to this antenna, not all the power delivered to the antenna can be radiated by the antenna. If an impedance mismatch exists between the signal generator and the antenna, some of the signal power is reflected from the antenna back to the generator. To effectively use this antenna, a matching circuit must be inserted between the signal generator and antenna to minimize this wasted power.

Figure 2 shows the matching circuit connecting the generator to the antenna. Port 1 is the input from the generator. Port 2 is the output that feeds the antenna.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×