Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T03:42:24.145Z Has data issue: false hasContentIssue false

Chapter 30 - Cartilage- and bone-forming tumors

Published online by Cambridge University Press:  19 October 2016

Markku Miettinen
Affiliation:
National Cancer Institute, Maryland
Get access
Type
Chapter
Information
Modern Soft Tissue Pathology
Tumors and Non-Neoplastic Conditions
, pp. 825 - 854
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Lichtenstein, L, Goldman, RL. Cartilage tumors in soft tissues, particularly in the hand and foot. Cancer 1964;17:12031208.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Jaffe, HL. Synovial chondromatosis and other benign articular tumors. In Tumor and Tumorous Conditions of the Bone and Joints. Philadelphia: Lea & Febiger; 1958:558566.Google Scholar
Dorfman, HD, Czerniak, B. Synovial lesions. In Bone Tumors. St. Louis, Mo: Mosby; 1998:10411086.Google Scholar
Reichel, PF. Chrondmatose der Kniegelenkskapsel. Arch Klin Chir 1900;61:717724.Google Scholar
Stout, AP, Verner, EW. Chondrosarcoma of the extraskeletal soft tissues. Cancer 1953;6:581590.Google Scholar
Enzinger, FM, Shiraki, M. Extraskeletal myxoid chondrosarcoma: an analysis of 34 cases. Hum Pathol 1972;3:421435.Google Scholar
Lichtenstein, L, Berstein, D. Unusual benign and malignant chondroid tumors of bone: survey of some mesenchymal cartilage tumors and malignant chondroblastic tumors including few multicentric ones as well as many atypical benign chondroblastomas and chondromyxoid fibromas. Cancer 1959;12:11421157.Google Scholar
Park, YK, Unni, KK, Beabout, JW, Hodgson, SF. Oncogenic osteomalacia: a clinicopathologic study of 17 bone lesions. J Korean Med Sci 1994;9:289298.Google Scholar
Weidner, N, Santa Cruz, D. Phosphaturic mesenchymal tumors: a polymorphous group causing osteomalacia or rickets. Cancer 1987;59:14421454.Google Scholar
Inclan, A. Tumoral calcinosis. JAMA 1943;121:490.Google Scholar
Becker, W. [Calcium gout (calcinosis interstitialis localisate)]. Medizinische 1958;40:15891590. [Article in German]Google Scholar
McCarty, D, Kohn, N, Faires, J. The significance of calcium phosphate crystals in the synovial fluid of arthritic patients: the “pseudogout syndrome.” II: Identification of crystals. Ann Intern Med 1962;56:738745.Google Scholar
Ling, D, Murphy, WA, Kyriakos, M. Tophaceous pseudogout. AJR Am J Roentgenol 1982;138:162165.Google Scholar
Ackerman, LV. Extraosseous localized non-neoplastic bone and cartilage formation (so-called myositis ossificans). J Bone Joint Surg 1958;40A:279298.CrossRefGoogle Scholar
Shore, EM, Gannon, FH, Kaplan, FS. Fibrodysplasia ossificans progressiva: why do some people have two skeletons? J Clin Rheumatol 1997;3:8489.Google Scholar
Fine, G, Stout, AP. Osteogenic sarcoma of the extraskeletal soft tissues. Cancer 1956;9:10271043.Google Scholar

Secondary Sources

Dahlin, DC, Salvador, AH. Cartilaginous tumors of the soft tissues of the hands and feet. Mayo Clin Proc 1974;49:721726.Google Scholar
Chung, EB, Enzinger, FM. Chondroma of soft parts. Cancer 1978;41:14141424.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Humphreys, H, Pambakian, PH, Fletcher, CDM. Soft tissue chondroma: a study of 15 tumors. Histopathology 1986;10:147159.CrossRefGoogle Scholar
Steiner, GC, Meushar, N, Norman, A, Present, D. Intracapsular and paraarticular chondromas. Clin Orthop Relat Res 1994;303:231236.CrossRefGoogle Scholar
Carney, JA. Gastric stromal sarcoma, pulmonary chondroma, and extra-adrenal paraganglioma (Carney’s triad): natural history, adrenocortical component and possible familial occurrence. Mayo Clin Proc 1999;74:543552.Google Scholar
Hondar Wu, HT, Chen, W, Lee, O, Chang, CY. Imaging and pathological correlation of soft tissue chondroma Clin Imaging 2005;30:3236.Google Scholar
Shon, W, Folpe, AL, Fritchie, KJ. ERG expression in chondrogenic bone and soft tissue tumours. J Clin Pathol 2015;68:125129.Google Scholar
Fetsch, JF, Vinh, TN, Remotti, F, et al. Tenosynovial (extraarticular) chondromatosis: an analysis of 37 cases of an underrecognized clinicopathologic entity with a strong predilection for the hands and feet and a high local recurrence rate. Am J Surg Pathol 2003;27:12601268.Google Scholar
Buddingh, EP, Naumann, S, Nelson, M, et al. Cytogenetic findings in benign cartilaginous neoplasms. Cancer Genet Cytogenet 2003;141:164168.Google Scholar
Sakai Junior, N, Abe, KT, Formigli, LM, et al. Cytogenetic findings in 14 benign cartilaginous neoplasms. Cancer Genet 2011;204:180186.Google Scholar
Dal Cin, P, Qi, H, Sciot, R, Van Den Berghe, H. Involvement of chromosomes 6 and 11 in a soft tissue chondroma. Cancer Genet Cytogenet 1997;93:177178.Google Scholar
Fletcher, JA, Pinkus, GS, Donovan, K, et al. Clonal rearrangement of chromosome band 6p21 in the mesenchymal component of pulmonary chondroid hamartoma. Cancer Res 1992;52:62246228.Google ScholarPubMed
Xiao, S, Lux, ML, Reeves, R, Hudson, TJ, Fletcher, JA. HMGI(Y) activation by chromosome 6p21 rearrangements in multilineage mesenchymal cells from pulmonary hamartoma. Am J Pathol 1997;150:911918.Google Scholar
Crotty, JM, Monu, JUV, Pope, TL Jr. Synovial osteochondromatosis. Radiol Clin North Am 1996;34:327342.Google Scholar
Sim, FH, Dahlin, DC, Ivins, JC. Extra-articular synovial chondromatosis. J Bone Joint Surg Am 1977;59A:492495.CrossRefGoogle Scholar
Sviland, L, Malcolm, AJ. Synovial chondromatosis presenting as painless soft tissue mass: a report of 19 cases. Histopathology 1995;27:275279.Google Scholar
Hermann, G, Klein, M, Abdelwahab, IF, Kenan, S. Synovial chondrosarcoma arising in synovial chondromatosis of the right hip. Skeletal Radiol 1997;26:366369.Google Scholar
Davies, RI, Hamilton, A, Biggart, JD. Primary synovial chondromatosis: a clinicopathologic review and assessment of malignant potential. Hum Pathol 1998;29:683688.Google Scholar
Evans, S, Boffano, M, Chaudhry, S, Jeys, L, Grimer R. Synovial chondrosarcoma arising in synovial chondromatosis. Sarcoma 2014;2014:647939.Google Scholar
Murphey, MD, Vidal, JA, Fanburg-Smith, JC, Gajewski, DA. From the archives of the AFIP: imaging of synovial chondromatosis with radiologic-pathologic correlation. Radiographics 2007;27:14651488.Google Scholar
McKenzie, G, Raby, N, Ritchie, O. A pictoral review of primary synovial chondromatosis. Eur Radiol 2008; 18:26622669.Google Scholar
Buddingh, EP, Krallman, P, Neff, JR, et al. Chromosome 6 abnormalities are recurrent in synovial chondromatosis. Cancer Genet Cytogenet 2003;140:1822.Google Scholar
Hocking, R, Negrine, J. Primary synovial chondromatosis of the subtalar joint affecting two brothers. Foot Ankle Int 2003;24:865867.Google Scholar
Hopyan, S, Nadesan, P, Yu, C, Wunder, J, Alman, BA. Dysregulation of hedgehog signalling predisposes to synovial chondromatosis. J Pathol 2005;206:143150.Google Scholar
Hachitanda, Y, Tsuneyoshi, M, Daimaru, Y, et al. Extraskeletal myxoid chondrosarcoma in young children. Cancer 1988;61:25212526.Google Scholar
Saleh, G, Evans, HL, Ro, JY, Ayala, AG. Extraskeletal myxoid chondrosarcoma: a clinicopathologic study of ten patients with long-term follow-up. Cancer 1992;70:28272830.Google Scholar
Lucas, DR, Fletcher, CD, Adsay, NV, Zalupski, MM. High-grade extraskeletal myxoid chondrosarcoma: a high-grade epithelioid malignancy. Histopathology 1999;35:201208.CrossRefGoogle ScholarPubMed
Ramesh, K, Gahukamble, L, Sarma, NH, Al Fituri, OM. Extraskeletal myxoid chondrosarcoma with dedifferentiation. Histopathology 1995;27:381382.Google Scholar
Meis-Kindblom, JM, Bergh, P, Gunterberg, B, Kindblom, LG. Extraskeletal myxoid chondrosarcoma: a reappraisal of its morphologic spectrum and prognostic factors based on 117 cases. Am J Surg Pathol 1999;23:636650.CrossRefGoogle ScholarPubMed
Drilon, AD, Popat, S, Bhuchar, G, et al. Extraskeletal myxoid chondrosarcoma: a retrospective review from 2 referral centers emphasizing long-term outcomes with surgery and chemotherapy. Cancer 2008;113:33643371.Google Scholar
Merimsky, O, Bernstein-Molho, R, Sagi-Eisenberg, R. Targeting the mammalian target of rapamycin in myxoid chondrosarcoma. Anticancer Drugs 2008;19:10191021.Google Scholar
Kapoor, N, Shinagare, AB, Jagannathan, JP, et al. Clinical and radiologic features of extraskeletal myxoid chondrosarcoma including initial presentation, local recurrence, and metastasis. Radiol Oncol 2014;48:235242.Google Scholar
Tateishi, U, Hasegawa, T, Nojima, T, Tukegami, T, Arai, Y. MR features of extraskeletal myxoid chondrosarcoma. Skeletal Radiol 2006;35:2733.Google Scholar
Kohashi, K, Oda, Y, Yamamoto, H, et al. SMARCB1/INI1 protein expression in round cell soft tissue sarcomas associated with chromosomal translocations involving EWS: a special reference to SMARCB1/INI1 negative variant extraskeletal myxoid chondrosarcoma. Am J Surg Pathol 2008;32:11681174.Google Scholar
Aigner, T, Oliveira, AM, Nascimento, AB. Extraskeletal myxoid chondrosarcomas do not show a chondrocytic phenotype. Mod Pathol 2004;17:214221.Google Scholar
Antonescu, CR, Argani, P, Erlandson, RA, et al. Skeletal and extraskeletal myxoid chondrosarcoma: a comparative clinicopathologic, ultrastructural, and molecular study. Cancer 1998;83:15041521.Google Scholar
O’Hara, B, Paetau, A, Miettinen, M. Keratin subsets and monoclonal antibody HBME-1 in chordoma: immunohistochemical differential diagnosis between tumors simulating chordoma. Hum Pathol 1998;29:119126.CrossRefGoogle ScholarPubMed
Stenman, G, Andersson, H, Mandahl, N, Meis-Kindblom, JM, Kindblom, LG. Translocation t(9;22)(q22;q12) is a primary cytogenetic abnormality in extraskeletal myxoid chondrosarcoma. Int J Cancer 1995;62:398402.CrossRefGoogle Scholar
Hirabayashi, Y, Ishida, T, Yoshida, MA, et al. Translocation (9;22)(q22;q12): a recurrent chromosome abnormality in extraskeletal myxoid chondrosarcoma. Cancer Genet Cytogenet 1995;81:3337.Google Scholar
Sciot, R, Dal Cin, P, Fletcher, C, et al. t(9;22)(q22–31;q11–12) is a consistent marker of extraskeletal myxoid chondrosarcoma: evaluation of three cases. Mod Pathol 1995;8:765768.Google Scholar
Brody, RI, Ueda, T, Hamelin, A, et al. Molecular analysis of the fusion of EWS to an orphan nuclear receptor gene in extraskeletal myxoid chondrosarcoma. Am J Pathol 1997;150:10491058.Google Scholar
Labelle, Y, Bussieres, J, Courjal, F, Goldring, MB. The EWS/TEC fusion protein encoded by the t(9;22) chromosomal translocation in human chondrosarcomas is a highly potent transcriptional activator. Oncogene 1999;18:33033308.Google Scholar
Kilpatrick, SE, Inwards, CY, Fletcher, CD, Smith, MA, Gitelis, S. Myxoid chondrosarcoma (chordoid sarcoma) of bone: a report of two cases and review of the literature. Cancer 1997;79:19031910.Google Scholar
Demicco, EG, Wang, WL, Madewell, JE, et al. Osseous myxochondroid sarcoma: a detailed study of 5 cases of extraskeletal myxoid chondrosarcoma of the bone. Am J Surg Pathol 2013;37:752762.Google Scholar
Sjogren, H, Meis-Kindblom, J, Kindblom, L-G, Aman, P, Stenman, G. Fusion of the EWS-related gene TAF2N to TEC in extraskeletal myxoid chondrosarcoma. Cancer Res 1999;59:50645067.Google Scholar
Ohkura, N, Nagamura, Y, Tsukada, T. Differential transactivation by orphan nuclear receptor NOR1 and its fusion gene product EWS/NOR1: possible involvement of poly(ADP-ribose) polymerase I, PARP-1. J Cell Biochem 2008;105:785800.Google Scholar
Agaram, NP, Zhang, L, Sung, YS, Singer, S, Antonescu, CR. Extraskeletal myxoid chondrosarcoma with non-EWSR1-NR4A3 variant fusions correlate with rhabdoid phenotype and high-grade morphology. Hum Pathol 2014;45:10841091.Google Scholar
Wang, WL, Mayordomo, E, Czerniak, BA, et al. Fluorescence in situ hybridization is a useful ancillary diagnostic tool for extraskeletal myxoid chondrosarcoma. Mod Pathol 2008;21:13031310.Google Scholar
Guccion, JG, Font, RL, Enzinger, FM, Zimmerman, LE. Extraskeletal mesenchymal chondrosarcoma. Arch Pathol 1973;95:336340.Google Scholar
Nakashima, Y, Unni, KK, Shives, TC, Swee, RG, Dahlin, DC. Mesenchymal chondrosarcoma of bone and soft tissue: a study of 111 cases. Cancer 1986;57:24442453.Google Scholar
Rushing, EJ, Armonda, RA, Ansari, Q, Mena, H. Mesenchymal chondrosarcoma: a clinicopathologic and flow cytometric study of 13 cases presenting in the central nervous system. Cancer 1996;77:18841891.Google Scholar
Gorelik, B, Ziv, I, Shohat, R, et al. Efficacy of weekly docetaxel and bevacizumab in mesenchymal chondrosarcoma: a new theranostic method combining xenografted biopsies with a mathematical model. Cancer Res 2008;68:90339040.Google Scholar
Dantonello, TM, Int-Veen, C, Leuschner, I, et al. Mesenchymal chondrosarcoma of soft tissues and bone in children, adolescents, and young adults: experiences of the CWS and COSS study groups. Cancer 2008;112:24242431.Google Scholar
Xu, J, Li, D, Xie, L, Tang, S, Guo W. Mesenchymal chondrosarcoma of bone and soft tissue: a systematic review of 107 patients in the past 20 years. PLoS One 2015;10:e0122216.Google Scholar
Chen, Y, Wang, X, Guo, L, et al. Radiological features and pathology of extraskeletal mesenchymal chondrosarcoma. Clin Imaging 2012;36:365370.Google Scholar
Murphey, MD, Walter, EA, Wilson, AJ, et al. Imaging of primary chondrosarcoma: radiologic-pathologic correlation. Radiographics 2003; 23:12451278.Google Scholar
Fanburg-Smith, JC, Auerbach, A, Marwaha, JS, et al. Immunoprofile of mesenchymal chondrosarcoma: aberrant desmin and EMA expression, retention of INI1, and negative estrogen receptor in 22 female-predominant central nervous system and musculoskeletal cases. Ann Diagn Pathol 2009;14:814.Google Scholar
Fanburg-Smith, JC, Auerbach, A, Marwaha, JS, Wang, Z, Rushing, EJ. Reappraisal of mesenchymal chondrosarcoma: novel morphologic observations of the hyaline cartilage and endochondral ossification and beta-catenin, sox 9, and osteocalcin immunostaining. Hum Pathol 2010; 41:653662.Google Scholar
Wang, L, Motoi, T, Khanin, R, et al. Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosomes Cancer 2012;51:127139.Google Scholar
Naumann, S, Krallman, PA, Unni, KK, et al. Translocation der(13;21)(q10;q10) in skeletal and extraskeletal mesenchymal chondrosarcoma. Mod Pathol 2002;15:572576.Google Scholar
Sainati, L, Scapinello, A, Montaldi, A, et al. A mesenchymal chondrosarcoma of a child with the reciprocal translocation (11;22)(q24;q12). Cancer Genet Cytogenet 1993;71:144147.Google Scholar
Hautmann, AH, Hautmann, MG, Kölbl, O, Herr, W, Fleck, M. Tumor-induced osteomalacia: an up-to-date review. Curr Rheumatol Rep 2015;17:512.Google Scholar
Folpe, AL, Fanburg-Smith, JC, Billings, SD, et al. Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am J Surg Pathol 2004;28:130.Google Scholar
Zimering, MB, Caldarella, FA, White, KE, Econs, MJ. Persistent tumor-induced osteomalacia confirmed by elevated postoperative levels of serum fibroblast growth factor-23 and 5-year follow-up of bone density changes. Endocr Pract 2005;11:108114.Google Scholar
Geller, JL, Khosravi, A, Kelly, MH, et al. Cinacalcet in the management of tumor-induced osteomalacia. J Bone Miner Res 2007;22:931937.Google Scholar
Nakanishi, K, Sakai, M, Tanaka, H, et al. Whole-body MR imaging in detecting phosphaturic mesenchymal tumor (PMT) in tumor induced hypophosphatemic osteomalacia. Magn Reson Med Sci 2013;12:4752.Google Scholar
Clugston, E, Gill, AC, Graf, N, Bonar, F, Gill, AJ. Use of immunohistochemistry for SSTR2A to support a diagnosis of phosphaturic mesenchymal tumour. Pathology 2015;47:173175.Google Scholar
Lee, JC, Jeng, YM, Su, SY, et al. Identification of a novel FN1-FGFR1 genetic fusion as a frequent event in phosphaturic mesenchymal tumour. J Pathol 2015;235:539545.Google Scholar
McGregor, D, Burn, J, Lynn, K, Robson, R. Rapid resolution of tumoral calcinosis after renal transplantation. Clin Nephrol 1999;51:5458.Google Scholar
Smack, D, Norton, SA, Fitzpatrick, JE. Proposal for a pathogenesis-based classification of tumoral calcinosis. Int J Dermatol 1996;35:265271.Google Scholar
Laskin, WB, Miettinen, M, Fetsch, JF. Calcareous lesions of the distal extremities resembling tumoral calcinosis (tumoral calcinosislike lesions): clinicopathologic study of 43 cases emphasizing a pathogenesis-based approach to classification. Am J Surg Pathol 2007;31:1525.Google Scholar
Narchi, H. Hyperostosis with hyperphosphatemia: evidence of familial occurrence and association with tumoral calcinosis. Pediatrics 1997;99:745748.Google Scholar
Albraham, Z, Rozner, I, Rozenbaum, M. Tumoral calcinosis: report of a case and brief review of the literature. J Dermatopathol 1996;23:545550.CrossRefGoogle Scholar
Noyez, JF, Murphree, SM, Chen, K. Tumoral calcinosis: a clinical report of eleven cases. Acta Orthop Belg 1993;59:249254.Google Scholar
Farzan, M, Farhoud, AR. Tumoral calcinosis: what is the treatment? Report of two cases of different types and review of the literature. Am J Orthop (Belle Mead NJ) 2011;40:E170E176.Google Scholar
Olsen, KM, Chew, FS. Tumoral calcinosis: pearls, polemics, and alternative possibilities. Radiographics 2006;26:871885.Google Scholar
Pakasa, NM, Kalengyai, RM. Tumoral calcinosis: a clinicopathological study of 111 cases with emphasis of the earliest changes. Histopathology 1997;31:1824.Google Scholar
McKee, PH, Liomba, NG, Hutt, MSR. Tumoral calcinosis: a pathological study of fifty-six cases. Br J Dermatol 1982;107:669674.Google Scholar
Slavin, RE, Wen, J, Kumar, D, Evans, EB. Familial tumoral calcinosis: a clinical, histopathologic, and ultrastructural study with an analysis of its calcifying process and pathogenesis. Am J Surg Pathol 1993;17:788802.Google Scholar
Shah, A, Miller, CJ, Nast, CC, et al. Severe vascular calcification and tumoral calcinosis in a family with hyperphosphatemia: a fibroblast growth factor 23 mutation identified by exome sequencing. Nephrol Dial Transplant 2014;29:22352243.Google Scholar
Masi, L, Beltrami, G, Ottanelli, S, et al. Human preosteoblastic cell culture from a patient with severe tumoral calcinosis-hyperphosphatemia due to a new GALNT3 gene mutation: study of in vitro mineralization. Calcif Tissue Int 2015;96:438452.Google Scholar
Laleye, A, Alao, MJ, Gbessi, G, et al. Tumoral calcinosis due to GALNT3 C.516–2A >T mutation in a black African family. Genet Couns 2008;19:183192.Google Scholar
Folsom, LJ, Imel, EA. Hyperphosphatemic familial tumoral calcinosis: genetic models of deficient FGF23 action. Curr Osteoporos Rep 2015;13:7887.Google Scholar
Topaz, O, Indelman, M, Chefetz, I, et al. A deleterious mutation in SAMD9 causes normophosphatemic familial tumoral calcinosis. Am J Hum Genet 2006;79:759764.Google Scholar
Hiramatsu, R, Ubara, Y, Tajima, T, et al. Tumoral calcinosis in a patient with hypoparathyroidism, sensorineural deafness, and renal dysplasia syndrome undergoing hemodialysis. Clin Case Rep 2015;3:7375.Google Scholar
Abdelsayed, RA, Said-Al-Naief, N, Salguerio, M, Holmes, J, El-Mofty, SK. Tophaceous pseudogout of the temporomandibular joint: a series of 3 cases. Oral Surg Oral Med Oral Pathol Oral Radiol 2014;117:369375.Google Scholar
Ishida, T, Dorfman, HD, Bullough, PG. Tophaceous pseudogout (tumoral calcium pyrophosphate dihydrate crystal deposition disease. Hum Pathol 1995;26:587593.Google Scholar
Tan, KB, Scolyer, RA, McCarthy, SW, et al. Tumoural calcium pyrophosphate dihydrate crystal deposition disease (tophaceous pseudogout) of the hand: a report of two cases including one with a previously unreported associated florid reactive myofibroblastic proliferation. Pathology 2008;40:719722.Google Scholar
Athanasou, NA, Caughey, M, Burge, P, Eta, L. Deposition of calcium pyrophosphate dihydrate crystals in a soft tissue chondroma. Ann Rheum Dis 1991;50;950952.Google Scholar
Schneider, I. [Calcium pyrophosphate dihydrate-crystal induced arthropathy] Z Rheumatol 2004;63:1021. [Article in German].Google Scholar
Fischer, AH, Morris, DJ. Pathogenesis of calciphylaxis: study of three cases with literature review. Hum Pathol 1995;26:10551064.Google Scholar
Oh, DH, Eulau, D, Tokugawa, DA, McGuire, JS, Kohler, S. Five cases of calciphylaxis and a review of the literature. J Am Acad Dermatol 1999;40:979987.Google Scholar
Hafner, J, Keusch, G, Wahl, C, et al. Uremic small-artery disease with medial calcification and intimal hyperplasia (so-called calciphylaxis): a complication of chronic renal failure and benefit from parathyroidectomy. J Am Acad Dermatol 1995;33:954962.Google Scholar
Oliveira, TM, Frazão, JM. Calciphylaxis: from the disease to the diseased. J Nephrol 2015;28:531540.Google Scholar
Vattikuti, R, Towler, DA. Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab 2004;286:E686E696.Google Scholar
Roverano, S, Ortiz, A, Henares, E, Eletti, M, Paira, S. Calciphylaxis of the temporal artery masquerading as temporal arteritis: a case presentation and review of the literature. Clin Rheumatol 2015;34:19851988.Google Scholar
Akgun, I, Erdogan, F, Aydingoz, O, Kesmezacar, H. Myositis ossificans in early childhood. J Arthroscop Rel Surg 1998;15:522526.Google Scholar
Kransdorf, MJ, Meis, JM. From the archives of the AFIP: extraskeletal osseous and cartilaginous tumors of the extremities. Radiographics 1993;13:853884.Google Scholar
Sukov, WR, Franco, MF, Erickson-Johnson, M, et al. Frequency of USP6 rearrangements in myositis ossificans, brown tumor, and cherubism: molecular cytogenetic evidence that a subset of “myositis ossificans-like lesions” are the early phases in the formation of soft-tissue aneurysmal bone cyst. Skeletal Radiol 2008;37:321327.Google Scholar
Konishi, E, Kusuzaki, K, Murata, H. Extraskeletal osteosarcoma arising in myositis ossificans. Skeletal Radiol 2001;30:3943.Google Scholar
Patel, RM, Weiss, SW, Folpe, AL. Heterotopic mesenteric ossification: a distinctive pseudosarcoma commonly associated with intestinal obstruction. Am J Surg Pathol 2006;30:119122.Google Scholar
Kaplan, FS, Gannon, FH, Hahn, GV, Wollner, N, Rauner, R. Pseudomalignant heterotopic ossification: differential diagnosis and report of two cases. Clin Orthop Relat Res 1998;346:134140.Google Scholar
Parikh, J, Hyare, H, Saifuddin, A. The imaging features of post-traumatic myositis ossificans with emphasis on MRI. Clin Radiol 2002;57:10581066.Google Scholar
Wheeler, K, Makary, R, Berrey, H. A case of malignant transformation of myositis ossificans. Am J Orthop (Belle Mead NJ) 2014;43(1):E25E27.Google Scholar
Lacout, A, Jarraya, M, Marcy, P-Y, Thariat, J, Carlier, RY. Myositis ossificans imaging: keys to successful diagnosis. Indian J Radiol Imaging 2012;22:3539.Google ScholarPubMed
Smith, R, Athanasou, NA, Vipond, SE. Fibrodysplasia (myositis) ossificans progressiva: clinicopathological features and natural history. Q J Med 1996;89:445456.Google Scholar
Kaplan, FS, Taas, JA, Gannon, FH, et al. The histopathology of fibrodysplasia ossificans progressiva. J Bone Joint Surg Am 1993;75:220230.Google Scholar
Cohen, RB, Hahn, GV, Tabas, JA, et al. The natural history of heterotopic ossification in patients who have fibrodysplasia ossificans progressiva: a study of forty-four patients. J Bone Joint Surg Am 1993;75:215219.Google Scholar
Connor, JM, Evans, DA. Fibrodysplasia ossificans progressiva: the clinical features and natural history of 34 patients. J Bone Joint Surg Br 1982;64:7683.Google Scholar
Brantus, JF, Meunier, PJ. Effects of intravenous etidronate and oral corticosteroids in fibrodysplasia ossificans progressiva. Clin Orthop 1998;346:117120.Google Scholar
Faruqi, T, Dhawan, N, Bahl, J, et al. Molecular, phenotypic aspects and therapeutic horizons of rare genetic bone disorders. Biomed Res Int 2014;2014:670842.Google Scholar
Kaplan, FS, Taas, JA, Gannon, FH, et al. The histopathology of fibrodysplasia ossificans progressiva. J Bone Joint Surg Am 1993;75:220230.Google Scholar
Fukuda, T, Kohda, M, Kanomata, K, et al. Constitutively activated ALK2 and increased smad1/5 cooperatively induce BMP signaling in fibrodysplasia ossificans progressiva. J Biol Chem 2009;284:71497156.Google Scholar
Furuya, H, Ikezoe, K, Wang, L, et al. A unique case of fibrodysplasia ossificans progressiva with an ACVR1 mutation, G356D, other than the common mutation (R206H). Am J Med Genet A 2008;146A:459463.Google Scholar
Fukuda, T, Kanomata, K, Nojima, J, et al. A unique mutation of ALK2, G356D, found in a patient with fibrodysplasia ossificans progressiva is a moderately activated BMP type I receptor. Biochem Biophys Res Commun 2008;377:905909.Google Scholar
Moosavi, CA, Al-Nahar, LA, Murphey, MD, Fanburg-Smith, JC. Fibroosseous pseudotumor of the digit: a clinicopathologic study of 43 new cases. Ann Diagn Pathol 2008;12:2128.Google Scholar
Dupree, WB, Enzinger, FM. Fibro-osseous pseudotumor of the digits. Cancer 1986;58:21032109.Google Scholar
Spjut, HJ, Dorfman, HD. Florid reactive periostitis of the tubular bones of the hands and feet: a benign lesion which may simulate osteosarcoma. Am J Surg Pathol 1981;5:423433.Google Scholar
Angervall, L, Stener, B, Stener, I, Ahren, C. Pseudomalignant osseous tumor of soft tissue. J Bone Joint Surg 1969;51B:654663.Google Scholar
Tang, J-B, Gu, YQ, Xia, RG. Fibro-osseous pseudotumor that may be mistaken for a malignant tumor in the hand: a case report and review of the literature. J Hand Surg 1996;21A:714716.CrossRefGoogle Scholar
Sleater, J, Mullins, D, Chun, K, Hendricks, J. Fibro-osseous pseudotumor of the digit: a comparison to myositis ossificans by light microscopy and immunohistochemical methods. J Cutan Pathol 1995;23:373377.Google Scholar
Chaudhry, IH, Kazakov, DV, Michal, M, et al. Fibro-osseous pseudotumor of the digit: a clinicopathological study of 17 cases. J Cutan Pathol 2010;37:323329.Google Scholar
Sundanam, M, Long, L, Rotman, M, Howard, R, Saboeiro, AP. Florid reactive periostitis and bizarre osteochondromatous proliferation: pre-biopsy imaging evolution, treatment and outcome. Skeletal Radiol 2001;30(4):192198.Google Scholar
Huvos, AG. Osteogenic sarcoma of bones and soft tissue in older persons: a clinicopathologic analysis of 117 patients older than 60 years. Cancer 1986;57:14421449.Google Scholar
Rao, U, Cheng, A, Didolkar, MS. Extraosseous osteogenic sarcoma: clinicopathological study of eight cases and review of the literature. Cancer 1978;41:14881496.Google Scholar
Jensen, ML, Schumacher, B, Jensen, OM, Nielsen, OS, Keller, J. Extraskeletal osteosarcomas: a clinicopathologic study of 25 cases. Am J Surg Pathol 1998;22:588594.CrossRefGoogle Scholar
Goldstein-Jackson, SY, Gosheger, G, Delling, G, et al. Extraskeletal osteosarcoma has a favourable prognosis when treated like conventional osteosarcoma. J Cancer Res Clin Oncol 2005;131:520526.Google Scholar
Torigoe, T, Yazawa, Y, Takagi, T, Terakado, A, Kurosawa, H. Extraskeletal osteosarcoma in Japan: multiinstitutional study of 20 patients from the Japanese Musculoskeletal Oncology Group. J Orthop Sci 2007;12:424429.Google Scholar
Fang, Z, Matsumoto, S, Ae, K, et al. Postradiation soft tissue sarcoma: a multiinstitutional analysis of 14 cases in Japan. J Orthop Sci 2004;9:242246.Google Scholar
Thampi, S, Matthay, KK, Boscardin, WJ, Goldsby, R, DuBois, SG. Clinical features and outcomes differ between skeletal and extraskeletal osteosarcoma. Sarcoma 2014;2014:902620.Google Scholar
Silver, SA, Tavassoli, FA. Primary osteogenic sarcoma of the breast: a clinicopathologic analysis of 50 cases. Am J Surg Pathol 1998;22;925933.Google Scholar
Cook, PA, Murphy, MS, Innis, PC, Yu, JS. Extraskeletal osteosarcoma of the hand. J Bone Joint Surg 1998;80A:725729.Google Scholar
Bane, BL, Evans, HL, Ro, JY, et al. Extraskeletal osteosarcoma: a clinicopathologic review of 26 cases. Cancer 1990;66:27622770.Google Scholar
Berner, K, Bjerkehagen, B, Bruland, ØS, Berner, A. Extraskeletal osteosarcoma in Norway, between 1975 and 2009, and a brief review of the literature. Anticancer Res 2015;35:21292140.Google Scholar
Chung, EB, Enzinger, FM. Extraskeletal osteosarcoma. Cancer 1987;60:11321142.Google Scholar
Sordillo, PP, Hajdu, SI, Magill, GB, Golbey, RB. Extraosseous osteogenic sarcoma: a review of 48 patients. Cancer 1983;51:727734.Google Scholar
Lee, JSY, Fetsch, JF, Wasdhal, DA, et al. A review of 32 patients with extraskeletal osteosarcoma. Cancer 1995;76:22532259.Google Scholar
McCarter, MD, Lewis, JJ, Antonescu, CR, Brennan, MF. Extraskeletal osteosarcoma: analysis of outcome of a rare neoplasm. Sarcoma 2000;4:119123.Google Scholar
McAuley, G, Jagannatham, J, O’Reagan, K, et al. Extraskeletal osteosarcoma: spectrum of imaging findings. AJR Am J Roentgenol 2012;198:W31W37.Google Scholar
Fanburg-Smith, JC, Bratthauer, GL, Miettinen, M. Osteocalcin and osteonectin immunoreactivity in extraskeletal osteosarcoma: a study of 28 cases. Hum Pathol 1999;30:3238.Google Scholar
Conner, JR, Hornick, JL. SATB2 is a novel marker of osteoblastic differentiation in bone and soft tissue tumors. Histopathology 2013;63:3649.Google Scholar
Ordonez, NG. SATB2 is a novel marker of osteoblastic differentiation and colorectal carcinoma. Adv Anat Pathol 2014;21:6367.Google Scholar
Mertens, F, Fletcher, CD, Dal Cin, P, et al. Cytogenetic analysis of 46 pleomorphic soft tissue sarcomas and correlation with morphologic and clinical features: a report of the CHAMP Study Group (Chromosomes and MorPhology). Genes Chromosomes Cancer 1998;22:1625.Google Scholar
Hauben, EI, Arends, J, Vandenbroucke, JP, et al. Multiple primary malignancies in osteosarcoma patients: incidence and predictive value of osteosarcoma subtype for cancer syndromes related with osteosarcoma. Eur J Hum Genet 2003;11:611618.Google Scholar
Hatori, M, Hosaka, M, Watanabe, M, et al. Osteosarcoma in a patient with neurofibromatosis type 1: a case report and review of the literature. Tohoku J Exp Med 2006;208:343348.Google Scholar
Kyriazoglou, AI, Vieira, J, Dimitriadis, E, et al. 12q amplification defines a subtype of extraskeletal osteosarcoma with good prognosis that is the soft tissue homologue of parosteal osteosarcoma. Cancer Genet 2012;205:332336.Google Scholar
von Baer, A, Ehrhardt, A, Baumhoer, D, et al. Immunohistochemical and FISH analysis of MDM2 and CDK4 in a dedifferentiated extraskeletal osteosarcoma arising in the vastus lateralis muscle: differential diagnosis and diagnostic algorithm. Pathol Res Pract 2014;210:698703.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×