This detailed and up-to-date guide to modern MOS structures describes important tools, cutting-edge models, novel phenomena and current challenges in measuring and improving the control of future MOS systems for transistor channels. Building up from basic electrostatics, it introduces the ideal MOS system, physical and electrical properties of high-k oxides, their dielectric constants, and energy offsets to semiconductors and metals, before moving on to electrical and physical characterization methods for high-k dielectric materials. Finally, real MOS systems are introduced: high-k dielectrics and interlayers, the influence of phonon dynamics, interface states and bulk traps, effective metal work functions, gate leakage phenomena and high mobility channel materials. Abstract concepts are supported by practical examples and critical comparison, encouraging an intuitive understanding of the principles at work, and presented alongside recent theoretical and experimental results, making this the ideal companion for researchers, graduate students and industrial development engineers working in nanoelectronics.
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.