Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-04-30T22:55:04.833Z Has data issue: false hasContentIssue false

5 - Static Multipoint Networks

Published online by Cambridge University Press:  05 June 2012

Thomas E. Stern
Affiliation:
Columbia University, New York
Georgios Ellinas
Affiliation:
University of Cyprus
Krishna Bala
Affiliation:
Xtellus, New Jersey
Get access

Summary

In static networks essentially all functionality resides in the network access stations (NASs). The performance of the network is therefore determined by how the NASs provide logical connectivity and throughput to satisfy the network's traffic requirements. This chapter explores the performance issues in static networks, viewing them all as special cases of shared media, as described in Section 5.1. Existing and potential uses of shared media abound, the most important of these being to provide efficient local access for end users to a larger optical network. The multiplexing and multiple-access techniques required to achieve multipoint logical connectivity in these networks are treated in Section 5.2. Sections 5.3 through 5.6 deal with capacity allocation and control to serve prescribed traffic requirements. We first point out some general flow conservation constraints that must be satisfied in any shared-channel system. Then the problems of traffic scheduling and control are discussed in settings with increasing degrees of complexity: dedicated connections (Section 5.4), demand-assigned connections (Section 5.5), and packet switching in the optical layer (Section 5.6). Section 5.7 discusses network access applications of static multipoint architectures. These include broadcast star-based and wavelength-router-based passive optical networks (PONs) that provide the foundation of fiber to the home/premises. In these applications the static network is the link between the end user and an optical core or metropolitan area network.

Shared Media: The Broadcast Star

The simplest form of a transparent optical network, the static network, was defined in Chapter 3 as a collection of fixed (passive) splitting/combining nodes without wavelength selectivity, interconnected by fibers that provide full or partial connectivity among a set of NASs.

Type
Chapter
Information
Multiwavelength Optical Networks
Architectures, Design, and Control
, pp. 324 - 431
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×