Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T05:29:14.297Z Has data issue: false hasContentIssue false

5 - Sensing, actuation, and interaction

Published online by Cambridge University Press:  05 July 2014

Tapani Ryhänen
Affiliation:
Nokia Research Center, Cambridge
Mikko A. Uusitalo
Affiliation:
Nokia Research Center, Helsinki
Olli Ikkala
Affiliation:
Helsinki University of Technology
Asta Kärkkäinen
Affiliation:
Nokia Research Center, Cambridge
P. Andrew
Affiliation:
Nokia Research Center
M. J. A. Bailey
Affiliation:
Nokia Research Center
T. Ryhänen
Affiliation:
Nokia Research Center
D. Wei
Affiliation:
Nokia Research Center
Get access

Summary

Introduction

Ubiquitous sensing, actuation, and interaction

The London of 2020, as described in Chapter 1, will have conserved most of its old character but it will also have become a mixed reality built upon the connections between the ubiquitous Internet and the physical world. These connections will be made by a variety of different intelligent embedded devices. Networks of distributed sensors and actuators together with their computing and communication capabilities will have spread throughout the infrastructures of cities and to various smaller objects in the everyday environment. Mobile devices will connect their users to this local sensory information and these smart environments. In this context, the mobile device will be a gateway connecting the local physical environment of its user to the specific digital services of interest, creating an experience of mixed virtual and physical realities. (See also Figure 1.1.)

Human interaction with this mixed reality will be based on various devices that make the immediate environment sensitive and responsive to the person in contact with it. Intelligence will become distributed across this heterogeneous network of devices that vary from passive radio frequency identification (RFID) tags to powerful computers and mobile devices. In addition, this device network will be capable of sharing information that is both measured by and stored in it, and of processing and evaluating the information on various levels.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] F., Zhao and L., Guibas, Wireless Sensor Networks, An Information Processing Approach, Morgan Kaufmann, 2004.Google Scholar
[2] G.-Z., Yang, Body Sensor Networks, Springer, 2006.Google Scholar
[3] T., Ryhanen, Impact of silicon MEMS – 30 years after, in Handbook of Silicon MEMS Materials and Technologies, V., Lindroos, M., Tilli, A., Lehto, and T., Motooka, eds., Elsevier, 2009 (in press).Google Scholar
[4] G., Meijer, ed., Smart Sensor Systems, Wiley, 2008.Google Scholar
[5] J. E., Huber, N. A., Fleck, and M. F., Ashby, The selection of mechanical actuators based on performance indices, Proc. R. Soc. Lond. A, 453, 2185-2205, 1997.Google Scholar
[6] S. P., Lacour, J., Jones, S., Wagner, T., Li, and Z., Suo, Stretchable interconnects for elastic electronic surfaces, Proc. IEEE, 93, 1459-1467, 2005.Google Scholar
[7] F. N., Hooge, T. G. M., Kleinpenning, and L. K. J., Vandamme, Experimental studies on 1/f noise, Rep. Prog. Phys., 44, 479-532, 1981.Google Scholar
[8] A., Van der Ziel, Noise in Solid State Devices and Circuits, Wiley, 1986.Google Scholar
[9] F. N., Hooge, 1 /f noise sources, IEEE Trans. Electron Devices, 41, 1926-1935, 1994.Google Scholar
[10] J., Chandrashekar, M. A., Hoon, N. J. P., Ryba, and C. S., Zuker, The receptors and cells of mammalian taste, Nature, 444, 288-294, 2006.Google Scholar
[11] E. A., Lumpkin and M. J., Caterina, Mechanisms of sensory transduction in the skin, Nature, 445, 858-865, 2007.Google Scholar
[12] Y., Tu, T. S., Shimizu, and H. C., Berg, Modeling the chemotactic response of Escherichia coli to time-varying stimuli, Proc. Natl Acad. Sci. (USA), 105, 14855-14860, 2008.Google Scholar
[13] S. D., Senturia, Microsystem Design, Kluwer, 2002.Google Scholar
[14] J., Monod, J., Wyman, and J. P., Changeux, On the nature of allosteric transitions: a plausible model, J. Mol. Biol., 12, 88-118, 1965.Google Scholar
[15] V., Sourjik, Receptor clustering and signal processing in E. coli chemotaxis, Trends Micro-biol., 12, 569-576, 2004.Google Scholar
[16] M. J., Tindall, S. L., Porter, P. K., Maini, G., Gaglia, and J. P., Armitage, Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell, Bull. Math. Biol., 70, 1525-1569, 2008.Google Scholar
[17] X.-J., Huang and Y.-K., Chon, Chemical sensors based on nanostructured materials, Sensors and Actuators B: Chemical, 122, 659-671, 2007.Google Scholar
[18] L. G., Carrascosa, M., Moreno, M., Alvarez, and L. M., Lechuga, Nanomechanical biosensors: a newsensing tool, Trends Anal. Chem., 25, 196-206, 2006.Google Scholar
[19] G., Zheng, F., Patolsky, Y., Cui, W. U., Wang, and C. M., Lieber, Multiplexed electrical detection of cancermarkers withnanowire sensorarrays, Nat. Biotech, 23, 1294-1301, 2005.Google Scholar
[20] B., He, T. J., Morrow, and C. D., Keating, Nanowire sensors for multiplexed detection of biomolecules, Curr. Op. Chem. Biol., 12, 522-528, 2008.Google Scholar
[21] P. E., Sheehan and L. J., Whitman, Detection limits for nanoscale biosensors, Nano Lett., 5, 803-807, 2005.Google Scholar
[22] W., Yang, P., Thordarson, J. J., Gooding, S. P., Ringer, and F., Braet, Carbon nanotubes for biological and biomedical applications, Nanotech., 18, 1-12, 2007.Google Scholar
[23] Y., Dan, S., Evoy, and A. T. C., Johnson, Chemical gas sensors based on nanowires http://arxiv.org/ftp/arxiv/papers/0804/0804.4828.pdf.
[24] T. W., Tombler, C., Zhou, L., Alexseyev, et al., Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation, Nature, 405, 769-772, 2000.Google Scholar
[25] E. D., Minot, Y., Yaish, V., Sazonova, J.-Y., Park, M., Brink, and P. L., McEuen, Tuning carbon nanotube band gaps with strain, Phys. Rev. Lett., 90, 156401, 2003.Google Scholar
[26] J., Cao, Q., Wang, and H., Dai, Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching, Phys. Rev. Lett., 90, 157601, 2003.Google Scholar
[27] C., Hierold, Frommicro-to nanosystems: mechanical sensors gonano, J. Micromech. Microeng., 14, S1-S11, 2004.Google Scholar
[28] C., Stampfer, A., Jungen and C., Hierold, Single Walled Carbon Nanotubes as Active Elements in Nano Bridge Based NEMS, in Proceedings of the 2005 5th IEEE Conference on Nanotechnology, IEEE, 2005.Google Scholar
[29] C., Stampfer, T., Helbling, D., Obergfell, et al.Fabrication of single-walled carbon-nanotube-based pressure sensors, Nano Lett., 6, 233-237, 2006.Google Scholar
[30] P. G., Collins, M. S., Fuhrer, and A., Zettl, 1 /fnoise in carbon nanotubes, Appl. Phys. Lett., 76, 894-896, 2000.Google Scholar
[31] Z. L., Wang and J., Song, Piezoelectric nanogenerators basedonzinc oxide nanowire arrays, Science, 312, 242-246, 2006.Google Scholar
[32] X., Wang, J., Zhou, J., Song, J., Liu, N., Xu, and Z. L., Wang, Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire, Nano Lett., 6, 2768-2772, 2006.Google Scholar
[33] J. H., He, C. L., Hsin, J., Liu, L. J., Chen, andZ. L., Wang, Piezoeletric gated diode of a single ZnO nanowire, Adv. Mat., 19, 781-784, 2007.Google Scholar
[34] Z., Wang, J., Hu, A. P., Suryavanshi, K., Yum, and M.-F., Yu, Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load, Nano Lett., 7, 2966-2969, 2007.Google Scholar
[35] X., Wang, J., Song, J., Liu, and Z. L., Wang, Direct-current nanogenerator driven by ultrasonic waves, Science, 316, 102-105, 2007.Google Scholar
[36] W. S., Su, Y. F., Chen, C. L., Hsiao, and L. W., Tu, Generation of electricity in GaN nanorods induced by piezoelectric effect, Appl. Phys. Lett., 90, 063110, 2007.Google Scholar
[37] J., Zhou, P., Fei, Y., Gao, et al., Mechanical-electrical triggers and sensors using piezoelectric microwires/nanowires, Nano Lett., 8, 2725-2730, 2008.Google Scholar
[38] F., Patolsky, G., Zheng, and C. M., Lieber, Nanowire-based biosensors, Anal. Chem., 78, 4260-4269, 2006.Google Scholar
[39] H.-H., Park, S., Jin, Y. J., Park, and H. S., Min, Quantum simulation of noise in silicon nanowire transistors, J. Appl. Phys., 104, 023708, 2008.Google Scholar
[40] S., Reza, G., Bosman, M. S., Islam, T. I., Kamins, S., Sharma, and R. S., Williams, Noise in silicon nanowires, IEEE Trans. Nanotech., 5, 523-529, 2006.Google Scholar
[41] J., Kivioja, A., Colli, M., Bailey, and T., Ryhanen, Double Gated Silicon Nanowwire Field Effect Transistors as Charge Detection Based Bio and Chemical Sensors, to be published.
[42] A., Bid, A., Bora, and A. K., Raychaudhuri, 1 /fnoise in nanowires, Nanotech., 17, 152-156, 2006.Google Scholar
[43] J., Kong, N. R., Franklin, C., Zhou, et al., Nanotube molecular wires as chemical sensors, Science, 287, 622-625, 2000.Google Scholar
[44] D., Zhang, C., Li, X., Liu, S., Han, T., Tang, and C., Zhou, Doping dependent NH3 sensing of indiumoxide nanowires, Appl. Phys. Lett., 83, 1845-1847, 2003.Google Scholar
[45] Z., Fan, D., Wang, P.-C., Chang, W.-Y., Tseng, and J. G., Lu, ZnO nanowire field-effect transistor and oxygen sensing property, Appl. Phys. Lett., 85, 5923-5925, 2004.Google Scholar
[46] Z., Fan and J. G., Lu, Chemical sensing with ZnO nanowire field-effect transistor, IEEE Trans. Nanotech., 5, 393-396, 2006.Google Scholar
[47] V. V., Sysoev, J., Goschnick, T., Schneider, E., Strelcov, and A., Kolmakov, A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements, Nano Lett., 7, 3182-3188, 2007.Google Scholar
[48] P.-C., Chen, F. N., Ishikawa, H.-K., Chang, K., Ryu, and C., Zhou, A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensing gas discrimination, Nanotech., 20, 125503, 2009.Google Scholar
[49] M. Y., Zavodchikova, T., Kulmala, A. G., Nasibulin, et al., Carbon nanotube thin film transistors based on aerosol methods, Nanotech., 20, 085201, 2009.Google Scholar
[50] T., Mattila, J., Kiihamäki, T., Lamminmaki, et al., 12 MHz micromechanical bulk acoustic mode oscillator, Sensor and Actuators, A101, 1-9, 2002.Google Scholar
[51] G., Piazza, R., Abdolvand, and F., Ayazi, Voltage-tunable piezoelectrically-transduced single-crystal silicon resonators on SOI substrate, in Proceedings of the IEEE Sixteenth Annual International Conference on Micro Electro Mechanical Systems (MEMS-03), pp. 149-152, IEEE, 2003.Google Scholar
[52] S., Humad, R., Abdolvand, G., Ho, G., Piazza, and F., Ayazi, High frequency micromechanical piezo-on-silicon block resonators, in Proceedings of the IEEE Sixteenth Annual International Conference on Micro Electro Mechanical Systems (MEMS-03), pp. 39-43, IEEE, 2003.Google Scholar
[53] V., Kaajakari, T., Mattila, A., Oja, and H., Seppa, Nonlinear limits for single-crystal silicon microresonators, J. Microelectromechanical Systems, 13, 715-724, 2004.Google Scholar
[54] A., Cleland, Foundations of Nanomechanics, Springer, 2003.Google Scholar
[55] A. N., Cleland and M. L., Roukes, Noise processes in nanomechanical resonators, J. Appl. Phys, 92, 2758-2769, 2002.Google Scholar
[56] K. L., Ekinci, Y. T., Yang, and M. L., Roukes, Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems, J. Appl. Phys., 95, 2682-2689, 2004.Google Scholar
[57] K. L., Ekinci and M. L., Roukes, Nanoelectromechanical systems, Rev. Sci. Instrum., 76, 061101, 2005.Google Scholar
[58] A. K., Naik, M. S., Hanay, W. K., Hiebert, X. L., Feng, and M. L., Roukes, Towards single-molecule nanomechanical mass spectrometry, Nature Nanotech., 4, 445-450, 2009.Google Scholar
[59] W. G., Conley, A., Raman, C. M., Krousgrill, and S., Mohammadil, Nonlinear and nonplanar dynamics of suspended nanotube and nanowire resonators, Nano Lett., 6, 1590-1595, 2008.Google Scholar
[60] R., He, X. L., Feng, M. L., Roukes, and P., Yang, Self-transducing silicon nanowire electrome-chanicalsystems at room temperature, Nano Lett., 8, 1756-1761, 2008.Google Scholar
[61] X. L., Feng, C. J., White, A., Hajimiri, and M. L., Roukes, Aself-sustaining ultrahigh-frequency nanoelectromechanical oscillator, Nature Nanotech., 3, 342-346, 2008.Google Scholar
[62] A., Colli, A., Fasoli, S., Pisana, et al., Nanowire lithography on silicon, Nano Lett., 8, 1358-1362, 2008.Google Scholar
[63] B., Lassagne, D., Garcia-Sanchez, A., Aguasca, and A., Bachtold, Ultrasensitive mass sensing with a nanotube electromechanical resonator, Nano Lett., 8, 3735-3738, 2008.Google Scholar
[64] J. S., Bunch, A. M., van der Zande, S. S., Verbridge, et al., Electromechanical resonators from graphene sheets, Science, 315, 490-493, 2007.Google Scholar
[65] J. T., Robinson, M., Zalalutdinov, J. W., Baldwin, et al., Wafer-scale reduced graphene oxide films for nanomechanical devices, Nano Lett., 8, 3441-3445, 2008.Google Scholar
[66] K., Jensen, J., Weldon, H., Garcia, and A., Zettl, Nanotube radio, Nano Lett., 7, 3508-3511, 2007.Google Scholar
[67] K., Jensen, K., Kim, and A., Zettl, An atomic-resolution nanomechanical mass sensor, Nature Nanotechnology, 3, 533-537, 2008.Google Scholar
[68] W. A., de Heer, A., Châtelain, and D. A., Ugarte, Carbon nanotube field-emission electron source, Science, 270, 1179-1180, 1995.Google Scholar
[69] S., Itoh and M., Tanaka, Current status of field-emission displays, Proc. IEEE, 90, 514-520, 2002.Google Scholar
[70] G., Amaratunga, Watching the nanotube, IEEE Spectrum, 40, 28-32, 2003.Google Scholar
[71] A., Ayari, P., Vincent, S., Perisanu, et al., Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc/ac conversion, 7, 2252-2257, 2007.
[72] C., McDonagh, C. S., Burke and B. D., MacCraith, Optical chemical sensors, Chem. Rev., 108, 400-422, 2008.Google Scholar
[73] X., Fan, I. M., White, S. I., Shopova, H., Zhu, J. D., Suter, and Y., Sun, Sensitive optical biosensors for unlabelled targets: a review, Anal. Chim. Acta, 620, 8-26, 2008.Google Scholar
[74] J., Homola. Surface plasmon resonance sensors for detection of chemical and biological species, Chem. Rev., 108, 462-493, 2008.Google Scholar
[75] K., Kneipp, M., Moskovits, and H., Kneipp, eds., Surface-Enhanced Raman Scattering-Physics and Applications, Topics in Applied Physics, vol. 103, Springer, 2006.
[76] S. A., Maier, Plasmonics: Fundamentals and Applications, Springer, 2007.Google Scholar
[77] Merging Optics and Nanotechnologies Consortium, 2008, A European Roadmap for Photonics and Nanotechnologies, Available: http://www.ist-mona.org
[78] C., Nylander,B., Liedberg, and T., Lind, Gas detection by means of surface plasmon resonance, Sens. Act., 3, 79, 1982.Google Scholar
[79] H., Raether, Surface Plasmons, Springer-Verlag, 1988.Google Scholar
[80] M., E Stewart, C. R., Anderson, L. B., Thompson, et al., Nanostructured plasmonics sensors, Chem. Rev., 108, 94-521, 2008.Google Scholar
[81] E., Bakker and Y., Qin, Electrochemical sensors, Anal. Chem., 78, 3965-3984, 2006.Google Scholar
[82] C., Amatore, S., Arbault, M., Guille, and F., Lemaitre, Electrochemical monitoring of single cellsecretion: vesicular exocytosis and oxidative stress, Chem. Rev., 108, 2585-2621, 2008.Google Scholar
[83] F., Fan, J., Kwak, and A. J., Bard, Single molecule electrochemistry, J. Am. Chem. Soc., 118, 9669-9675, 1996.Google Scholar
[84] R. T., Kennedy, L., Huang, M., Atkinson, and P., Dush, Amperometric monitoring of chemical secretions from individual pancreatic beta-cells, Anal. Chem., 65, 1882-1887, 1993.Google Scholar
[85] Y., Cui, Q., Wei, H., Park, and C. M., Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science, 293, 1289-1292, 2001.Google Scholar
[86] C. P., Andrieux, P., Hapiot, and J. M., Saveant, Ultramicroelectrodes for fast electrochemical kinetics, Electroanalysis, 2, 183-193, 1990.Google Scholar
[87] A. J., Bard and L. R., Faulkner, Potential sweep methods in Electrochemical Methods, Fundamentals and Applications, second edition, pp. 226-260, Wiley, 2001.Google Scholar
[88] A. J., Bard, J. A., Crayston, G. P., Kittlesen, T., VarcoShea, and M. S., Wrighton, Digitalsimulation of the measured electrochemical response of reversible redox couples at microelectrode arrays: consequences arising from closely spaced ultramicroelectrodes, Anal. Chem., 58, 2321-2331, 1986.Google Scholar
[89] E., Stern, J. F., Klemic, D. A., Routenberg, et al., Label-free immunodetection with CMOS-compatible semiconducting nanowires, Nature, 445, 519-522, 2007.Google Scholar
[90] P. R., Nair and M. A., Alam, Screening-limited response of nanobiosensors, Nano Lett., 8, 1281-1285, 2008.Google Scholar
[91] J., Wang, Electrochemical biosensors: towards point-of-care cancer diagnostics, Biosens. Bioelectron., 21, 1887-1892, 2006.Google Scholar
[92] J., Hahm and C. M., Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors, Nano Lett., 4, 51-54, 2004.Google Scholar
[93] H., Reller, E., Kirowa-Eisner, and E., Gileadi, Ensembles of microelectrodes: digital simulation by the two dimensional expanding grid method. Cyclic voltammetry, iR effects and applications, J. Electroanal. Chem., 161, 247-268, 1984.Google Scholar
[94] I. F., Cheng, L. D., Whiteley and C. R., Martin, Ultramicroelectrode ensembles. Comparisonof experimental and theoretical responses and evaluation of electroanalytical detection limits, Anal. Chem., 61, 762-766, 1989.Google Scholar
[95] V. P., Menon and, C. R., Martin, Fabrication and evaluation of nanoelectrode ensembles, Anal. Chem., 67, 1920-1928, 1995.Google Scholar
[96] Y., Netzer, The design of low-noise amplifier, Proc. IEEE, 69, 728-741, 1981.Google Scholar
[97] W., Gerstner and W., Kistler, Spiking Neuron Models–Single Neurons, Populations, Plasticity, Cambridge University Press, 2002.Google Scholar
[98] T., Morie, T., Matsuura, M., Nagata, and A., Iwata, A multinanodot floating-gate MOSFET circuit for spiking neuron models, IEEE Trans. Nanotech., 2, 158-164, 2003.Google Scholar
[99] A. V. M., Herz, T., Gollisch, C. K., Machens, and D., Jaeger, Modeling single-neuron dynamics and computations: a balance of detail and abstraction, Science, 314, 80-85, 2006.Google Scholar
[100] L. O., Chua and S. M., Kang, Memristive devices and systems, Proc. IEEE, 64, 209-223, 1976.Google Scholar
[101] R., Waser and M., Aono, Nanoionics-based resistive switching memories, Nature Mat., 6, 833-840, 2007.Google Scholar
[102] D. B., Strukov, G. S., Snider, D. R., Stewart, and R. S., Williams, The missing memristor found, Nature, 453, 80-83, 2008.Google Scholar
[103] J. J., Yang, M. D., Pickett, X., Li, D. A. A., Ohlberg, D. R., Stewart, and R. S., Williams, Memristive switching mechanism for metal/oxide/metal nanodevices, Nature Nanotech., 3, 429-433, 2008.Google Scholar
[104] M., Rinkio, A., Johansson, G. S., Paraoanu, and P., Torma, High-speed memory from carbon nanotube field-effect transistors with high-/c gate dielectric, Nano Lett., 9, 643-647, 2009.Google Scholar
[105] S. H., Jo, K.-H., Kim, and W., Lu, High-density crossbar arrays based on a Si memristive system, Nano Lett., 9, 870-874, 2009.Google Scholar
[106] L., Gammaitoni, P., Hanggi, P., Jung, and F., Marchesoni, Stochastic resonance, Rev. Mod. Phys, 70, 223-287, 1998.Google Scholar
[107] M. D., Donnell, N. G., Stocks, C. E. M., Pearce, and D., Abbott, Stochastic Resonance–From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization, Cambridge University Press, 2008.Google Scholar
[108] J. J., Collins, C. C., Chow, and T. T., Imhoff, Stochastic resonance without tuning, Nature, 376, 236-238, 1995.Google Scholar
[109] R. L., Badzey and P., Mohanty, Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance, Nature, 437, 995-998, 2005.Google Scholar
[110] F., Martorell, M. D., McDonnell, A., Rubio, and D., Abbott, Using noise to break the noise barrier in circuits, in Proceedings of the SPIE Smart Structures, Devices, and Systems II, vol. 5649, S.F., Al-Sarafi, ed., pp. 53-66, SPIE, 2005.Google Scholar
[111] I., Lee, X., Liu, C., Zhou, and B., Kosko, Noise-enhanced detection of subthreshold signals with carbon nanotubes, IEEE Trans. Nanotech., 5, 613-627, 2006.Google Scholar
[112] T., Oya, T., Asai, and Y., Amemiya, Stochastic resonance in an ensemble of single-electron neuromorphic devices and its application to competitive neural networks, Chaos, Solitons and Fractals, 32, 855-861, 2007.Google Scholar
[113] S., Kasai and T., Asai, Stochastic resonance in Schottky wrap gate-controlled GaAs field-effect transistors and their networks, Appl. Phys. Express, 1, 1-3, 2008.Google Scholar
[114] J. R., Heath, P. J., Kuekes, G. S., Snider, and R. S., Williams, A defect-tolerant computer architecture: opportunities for nanotechnology, Science, 280, 1716-1721, 1998.Google Scholar
[115] M. M., Ziegler and M. R., Stan, CMOS/nano co-design for crossbar-based molecular electronic systems, IEEE Trans. Nanotechnology, 2, 217-230, 2003.Google Scholar
[116] Ö., Türel, J. H., Lee, X., Ma, and K. K., Likharev, Neuromorphic architectures for nanoelectronic circuits, Int. J. Circ. Theor. Appl., 32, 277-302, 2004.Google Scholar
[117] D. B., Strukov and K. K., Likharev, CMOL FPGA: a reconfigurable architecture for hybrid circuits with two-terminal nanodevices, Nanotechnology, 16, 888-900, 2005.Google Scholar
[118] X., Ma, D. B., Strukov, J. H., Lee, and K. K., Likharev, Afterlife for silicon: CMOL circuit architectures, in Proceedings of the Fifth IEEE Conference on Nanotechnology (2005), IEEE, 2005.Google Scholar
[119] A., DeHon, Nanowire-based programmable architectures, ACM J. Emerging Technol. Computing Sys., 1, 109-162, 2005.Google Scholar
[120] C. A., Moritz, T., Wang, P., Narayanan, et al., Fault-tolerant nanoscale processors on semiconductor nanowire grids, IEEE Trans. Circuits Syst. I, 54, 2422-2437, 2007.Google Scholar
[121] G. S., Snider and R. S., Williams, Nano/CMOS architectures using a field-programmable nanowire interconnect, Nanotech., 18, 1-11, 2007.Google Scholar
[122] F. C., Hoppensteadt and E. M., Izhikevich, Pattern recognition via synchronization in phase-locked loop neural networks, IEEE Trans. Neural Networks, 11, no. 3, 734-738, 2000.Google Scholar
[123] F. C., Hoppensteadt and E. M., Izhikevich, Synchronization of MEMS resonators and mechanical neurocomputing, IEEE Trans. Circuits Syst. I, 48, no. 2, 133-138, 2001.Google Scholar
[124] A., Pikovsky, M., Rosenblum, and J., Kurths, Synchronization – A Universal Concept in Nonlinear Sciences, Cambridge University Press, 2001.Google Scholar
[125] E., Buks and M. L., Roukes, Electrically tunable collective response in a coupled micromechanical array, J. Microelectromechanical Systems, 11, 802-807, 2002.Google Scholar
[126] M., Sato, B. E., Hubbard, A. J., Sievers, B., Ilic, D. A., Czaplewski, and H. G., Craighead, Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array, Phys. Rev. Lett., 90, 044102, 2003.Google Scholar
[127] R., Lifshitz and M. C., Cross, Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays, Phys. Rev., B67, 134302, 2003.Google Scholar
[128] M. C., Cross, A., Zumdieck, R., Lifshitz, and J. L., Rogers, Synchronization by nonlinear frequency pulling, Phys. Rev. Lett., 93, 224101, 2004.Google Scholar
[129] M. K., Zalalutdinov, J. W., Baldwin, M. H., Marcus, R. B., Reichenbach, J. M., Parpia, and B. H., Houston, Two-dimensional array of coupled nanomechanical resonators, Appl. Phys. Lett., 88, 143504, 2006.Google Scholar
[130] N., Nefenov, Applications of coupled nanoscale resonators for spectral sensing, J. Phys.: Condens. Matter, 21, 2009, in press.
[131] E., Goto, The parametron, a digital computing element which utilizes parametric oscillation, Proc. IRE, 1304-1316, 1959.Google Scholar
[132] I., Mahboob and H., Yamaguchi, Bit storage and bit flip operations in an electromechanical oscillator, Nature Nanotech., 3, 275-279, 2008.Google Scholar
[133] L., Lin, R., Osan, andJ. Z., Tsien, Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes, Trends Neurosciences, 29, 48-57, 2006.Google Scholar
[134] J., Hertz, A., Krogh, and R. G., Palmer, Introduction to the Theory of Neural Computation, Santa Fe Institute in the Science of Complexity, Westview Press, 1991.Google Scholar
[135] E., Alpaydin, Introduction to Machine Learning, MIT Press, 2004.Google Scholar
[136] N., Cristianini and J., Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge University Press, 2000.Google Scholar
[137] M., Uusitalo, J., Peltonen, and T., Ryhanen, Machine Learning: How It Can Help Nanocom-puting, to be published, 2009.Google Scholar
[138] Y., Bar-Cohen, T., Xue, M., Shahinpoor, J., Simpson, and J., Smith, Flexible, low-mass robotic arm actuated by electroactive polymers and operated equivalently to human arm and hand, in the Proceedings of Robotics 98: The Third Conference and Exhibition/Demonstration on Robotics for Challenging Environments (1998), ASCE, 1998.Google Scholar
[139] D., Voet, J. G., Voet, and C. W., Pratt, Fundamentals of Biochemistry, Life at the Molecular Level, second edition, pp. 1072-1114, Wiley, 2006.Google Scholar
[140] A., Ummat, A., Dubey and C., Mavroidis, Bio-nanorobotics: a field inspired by nature, in Biomimetics, Biologically Inspired Technologies, Y., Bar-Cohen, ed., Taylor & Francis, 2006.Google Scholar
[141] Y., Bar-Cohen, Artificial muscles using electroactive polymers, in Biomimetics, Biologically Inspired Technologies, Y., Bar-Cohen, ed., Taylor & Francis, 2006.Google Scholar
[142] R. M., Walser, Metamaterials: an introduction, in Introduction to Complex Mediums for Electromagnetics and Optics, W. S., Weiglhofer and A., Lakhtakia, eds., SPIE Press, 2003.Google Scholar
[143] R. D., Kornbluh, R. E., Pelrine, H., Prahlad and S. E., Stanford, Mechanical meta-materials, International Patent Number WO2005/089176A2, 2005.
[144] R. H., Baughman, and L. W., Shacklette, Application of dopant-induced structure property changes of conducting polymers, in Science and Applications of Conducting Polymers, W. R., Salanek, D. T., Clark, E. J., Samuelson, eds., p. 47, AdamHilger, 1991.Google Scholar
[145] T. F., Otero and E., de Larreta-Azelain, Electrochemical control of themorphology, adherence, appearance and growth of polypyrrole films, Synth. Met., 26, 79-88, 1988.Google Scholar
[146] E. W. H., Jager, E., Smela, and O., Inganas, Microfabricating conjugated polymer actuators, Science, 290, 1540-1545, 2000.Google Scholar
[147] E., Smela, O., Inganas, andW., Lu, Controlled folding of micrometer-size structures, Science, 268, 1735-1738, 1995.Google Scholar
[148] T. F., Otero and M. T., Cortes, Artificial muscles with tactile sensitivity, Adv. Mater., 15, 279-282, 2003.Google Scholar
[149] J. M., Sansinena, V, Olazabal, T. F., Otero, C. N., Polo da Fonseca, and M. A., De Paoli, A solid state artificial muscle based on polypyrrole and a solid polymeric electrolyte working in air, Chem. Commun., 22, 2217-2218, 1997.Google Scholar
[150] R. H., Baughman, C. X., Cui, A. A., Zakhidov, et al., Carbon nanotube actuators, Science, 284, 1340-1344, 1999.Google Scholar
[151] T., Fukushima, A., Kosaka, Y., Ishimura, et al., Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes, Science, 300, 2072-2074, 2003.Google Scholar
[152] T., Fukushima, K., Asaka, A., Kosaka, and T., Aida, Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel, Angew. Chem. Int. Ed., 44, 2410-2413, 2005.Google Scholar
[153] G., Gu, M., Schmid, P. W., Chiu, et al., V2O5 nanofibre sheet actuators, Nat. Mater., 2, 316-319, 2003.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×