from IV - X-rays and Accretion Disks
Published online by Cambridge University Press: 04 August 2010
Abstract
The polarization properties of a two-phase model, recently proposed to explain the X-ray emission of Active Galactic Nuclei, have been calculated for different values of the model parameters. An important signature of the model is the orthogonality between the UV/soft X-ray and hard X-ray polarization.
Recently, a two-phase model in which hot, thermal electrons in an optically thin layer comptonize the soft photons coming from an underlying cold, optically thick accretion disc, has been proposed to explain the X-ray emission of Active Galactic Nuclei.
Assuming a plane-parallel geometry, and isotropic and unpolarized disc thermal radiation, we have calculated the polarization properties as a function of the energy and of the inclination angle, for different values of τ0, the optical depth of the hot phase (which, in the adopted model, is related to the electron temperature). This was done by solving the well-known equation of radiative transfer by separating the different scattering orders. The polarization of the X-rays reflected from the disc has also been taken into account. In the figure we show the degree of polarization as a function of the energy for different values of the inclination angle (at the two extremes of the energy range ∣P∣ increases with it). The assumed energy shape of the thermal radiation is a black-body with T=50eV. Note that the hard X-rays have a negative polarization (i.e. the polarization vector lies in the meridian plane), while the polarization of the UV/soft X-rays is positive (i.e. the polarization vector is perpendicular to the meridian plane).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.