Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-04-30T13:48:56.346Z Has data issue: false hasContentIssue false

1 - Anatomical and physiological basis for neural plasticity

Published online by Cambridge University Press:  08 February 2010

Aage R. Møller
Affiliation:
University of Texas, Dallas
Get access

Summary

Introduction

The nervous system is plastic and expression of neural plasticity can compensate for losses and adapt to changing demands, but the induced changes in the function of the nervous system can also cause symptoms and signs of disease. In fact, such functional change causes or contributes to the symptoms of many disorders of the nervous system. This chapter provides an overview of the mechanisms involved in expression of neural plasticity in general, its role in compensating for deficits and adapting to changing demands, and in creating signs and symptoms of disease. The mechanisms involved in expression of neural plasticity and the physiological and anatomical basis for expression of neural plasticity are discussed.

In the following chapters of this book, we will discuss the pathophysiology of neurological disorders and the role of expression of neural plasticity. In these chapters we will discuss the different symptoms and signs that are caused by expression of neural plasticity while this chapter will provide an overview of the role of expression of neural plasticity and the physiological and anatomical basis for expression of neural plasticity.

Advantages to the organism from neural plasticity

The beneficial effects of expression of neural plasticity can be divided into three main groups:

  1. a. Necessary for normal postnatal development.

  2. b. It makes the nervous system adapt to changing demands.

  3. c. It can compensate for loss of function and reorganize the nervous system to replace lost functions.

Postnatal development

Perhaps the greatest advantage to humans from neural plasticity is the postnatal development of skills and adaptation to different tasks.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahroon, W. A. and , R. P. Hamernik, Noise-Induced Hearing Loss in the Noise-Toughened Auditory System. Hear. Res., 1999. 129: pp. 101–110.CrossRefGoogle ScholarPubMed
Altschuler, R. A., , Y. Cho, , J. Ylikoski, , U. Pirvola, , E. Magal, and , J. M. Miller, Rescue and Regrowth of Sensory Nerves Following Deafferentiation by Neurotrophic Factors. Ann. N.Y. Acad. Sci., 1999. 884: pp. 305–11.CrossRefGoogle Scholar
Arendt-Nielsen, L., , J. Brennum, , S. Sindrup, and , P. Bak, Electrophysiological and Psychophysical Quantification of Temporal Summation in the Human Nociceptive System. Eur. J. Appl. Physiol. Occup. Physiol., 1994. 68(3): pp. 266–73.CrossRefGoogle ScholarPubMed
Bach, S., , M. F. Noreng, and , N. U. Tjellden, Phantom Limb Pain in Amputees During the First 12 Months Following Limb Amputation, after Preoperative Lumbar Epidural Blockade. Pain, 1988. 33: pp. 297–301.CrossRefGoogle ScholarPubMed
Bear, M. F., , L. N. Cooper, and , F. F. Ebner, A Physiological Basis for a Theory of Synapse Modification. Science, 1987. 237(4810): pp. 42–8.CrossRefGoogle ScholarPubMed
Boivie, J., Central Pain, in Textbook of Pain, , P. D. Wall and , R. Melzack, Editors. 1999, Churchill Livingstone: Edinburgh. pp. 879–914.Google Scholar
Bolay, H. and , M. A. Moskowitz, Mechanisms of Pain Modulation in Chronic Syndromes. Neurology, 2002. 59 (Suppl. 2): pp. S2–7.CrossRefGoogle ScholarPubMed
Born, D. E. and , E. W. Rubel, Afferent Influences on Brain Stem Auditory Nuclei of the Chicken: Presynaptic Action Potentials Regulate Protein Synthesis in Nucleu Magnoc 295Xellularis Neurons. J. Neurosci., 1988. 8(3): pp. 901–919.CrossRefGoogle Scholar
Brach, J. S., , J. M. Van Swearingen, , J. Lenert, and , P. C. Johnson, Facial Neuromuscular Retraining for Oral Synkinesis. Plastic and Reconstructive Surgery, 1997. 99(7): pp. 1922–1931.CrossRefGoogle ScholarPubMed
Brattgard, S. O., The Importance of Adequate Stimulation for the Chemical Composition of Retinal Ganglion Cells During Early Postnatal Development. Acta Radiol. (Stockh.), 1952. Suppl. 96: pp. 1–80.Google Scholar
Braun, C., , R. Schweizer, , T. Elbert, , N. Birbaumer, and , E. Taub, Differential Activation in Somatosensory Cortex for Different Discrimination Tasks. J. Neurosci., 2000. 20(1): pp. 446–50.CrossRefGoogle ScholarPubMed
Brown, J. A., , H. L. Lutsep, , S. C. Cramer, and , M. Weinand, Motor Cortex Stimulation for Enhancement of Recovery after Stroke: Case Report. Neurol. Res., 2003. 25: pp. 815–818.CrossRefGoogle ScholarPubMed
Cacace, A. T., , T. J. Lovely, , D. J. McFarland, , S. M. Parnes, and , D. F. Winter, Anomalous Cross-Modal Plasticity Following Posterior Fossa Surgery: Some Speculations on Gaze-Evoked Tinnitus. Hear. Res., 1994. 81: pp. 22–32.CrossRefGoogle ScholarPubMed
Cacace, A. T., Expanding the Biological Basis of Tinnitus: Crossmodal Origins and the Role of Neuroplasticity. Hear. Res., 2003. 175: pp. 112–132.CrossRefGoogle ScholarPubMed
Canlon, B., , E. Borg, and , A. Flock, Protection against Noise Trauma by Pre-Exposure to a Low Level Acoustic Stimulus. Hear. Res., 1988. 34: pp. 197–200.CrossRefGoogle ScholarPubMed
Cant, N. B., Structural Development of the Mammalian Auditory Pathways, in Development of the Auditory System, , E. W. Rubel, , A. N. Popper, and , R. R. Fay, Editors. 1998, Springer: New York. pp. 315–413.Google Scholar
Chan, S. L. and , M. M. Mattson, Caspase and Calpain Substrates: Roles in Synaptic Plasticity and Cell Death. J. Neurosci. Res., 1999. 58(1): pp. 167–90.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Coderre, T. J., , J. Katz, , A. L. Vaccarino, and , R. Melzack, Contribution of Central Neuroplasticity to Pathological Pain: Review of Clinical and Experimental Evidence. Pain, 1993. 52: pp. 259–285.CrossRefGoogle ScholarPubMed
Corbett, D., Ketamine Blocks the Plasticity Associated with Prefrontal Cortex Self-Stimulation. Pharmacology, Biochemistry & Behavior, 1990. 37(4): pp. 685–8.CrossRefGoogle ScholarPubMed
Ridder, D., , E. Verstraeten, , K. van der Kelen, , G. De Mulder, , S. Sunaert, , J. Verlooy, , P. van de Heyning, and , A. Møller. Transcranial Magnetic Stimulation for Tinnitus: Influence of Tinnitus Duration on Stimulation Parameter Choice and Maximal Tinnitus Suppression. Otol Neurotol., 2005. Jul. 26(4): pp. 616–619.CrossRefGoogle ScholarPubMed
Ridder, D., , G. De Mulder, , V. Walsh, , N. Muggleton, , S. Sunaert, and , A. Møller, Magnetic and Electrical Stimulation of the Auditory Cortex for Intractable Tinnitus. J. Neurosurg, 2004. 100(3): pp. 560–4.CrossRefGoogle ScholarPubMed
Deitch, J. S. and , E. W. Rubel, Rapid Changes in Ultrastructure During Deafferentiation-Induced Dendritic Atrophy. J. Comp. Neurol., 1989. 281: pp. 234–258.CrossRefGoogle Scholar
Densert, B. and , K. Sass, Control of Symptoms in Patients with Ménière's Disease Using Middle Ear Pressure Applications: Two Years Follow-Up. Acta Otolaryng. (Stockh.), 2001. 121: pp. 616–621.CrossRefGoogle ScholarPubMed
Doubell, T. P., R. J. Mannion, and C. J. Woolf, The Dorsal Horn: State-Dependent Sensory Processing, Plasticity and the Generation of Pain, in Handbook of Pain, , P. D. Wall and , R. Melzack, Editors. 1999, Churchill Livingstone: Edinburgh. pp. 165–181.Google Scholar
Edeline, J. M., The Thalamo-Cortical Auditory Receptive Fields: Regulation by the States of Vigilance, Learning and the Neuromodulatory System. Exp. Brain Res., 2003. 153(4): pp. 554–72.CrossRefGoogle Scholar
Elbert, T., , C. Pantev, , C. Wienbruch, , B. Rockstroh, and , E. Taub, Increased Cortical Representation of the Fingers of the Left Hand in String Players. Science, 1995. 270(5234): pp. 305–7.CrossRefGoogle ScholarPubMed
Engel, A. K. and , G. W. Kreutzberg, Neuronal Surface Changes in the Dorsal Vagal Motor Nucleus of the Guinea Pig in Response to Axotomy. J. Comp. Neurol., 1988. 275: pp. 181–200.CrossRefGoogle ScholarPubMed
Fritschy, J. M. and , I. Brunig, Formation and Plasticity of Gamma aminobutyric acidergic Synapses: Physiological Mechanisms and Pathophysiological Implications. Pharmacol. Ther., 2003. 98(3): pp. 299–323.CrossRefGoogle Scholar
Frost, S. B., , S. Barbay, , K. M. Friel, , E. J. Plautz, and , R. J. Nudo, Reorganization of Remote Cortical Regions after Ischemic Brain Injury: A Potential Substrate for Stroke Recovery. J. Neurophysiol., 2003. 89(6): pp. 3205–14.CrossRefGoogle ScholarPubMed
Gerken, G. M., Temporal Summation of Pulsate Brain Stimulation in Normal and Deafened Cats. J. Acoust. Soc. Am., 1979(66): pp. 728–734.CrossRefGoogle ScholarPubMed
Gerken, G. M., , S. S. Saunders, and , R. E. Paul, Hypersensitivity to Electrical Stimulation of Auditory Nuclei Follows Hearing Loss in Cats. Hear. Res., 1984. 13: pp. 249–260.CrossRefGoogle ScholarPubMed
Gerken, G. M., , J. M. Solecki, and , F. A. Boettcher, Temporal Integration of Electrical Stimulation of Auditory Nuclei in Normal Hearing and Hearing-Impaired Cat. Hear. Res., 1991. 53: pp. 101–112.CrossRefGoogle ScholarPubMed
Goda, Y. and , G. W. Davis, Mechanisms of Synapse Assembly and Disassembly. Neuron, 2003. 40(2): pp. 243–64.CrossRefGoogle ScholarPubMed
Goddard, G. V., Amygdaloid Stimulation and Learning in the Rat. J. Comp. Physiol. Psychol., 1964. 58: pp. 23–30.CrossRefGoogle ScholarPubMed
Goshgarian, H. G. and , L. Guth, Demonstration of Functionally Ineffective Synapses in the Guinea Pig Spinal Cord. Exp. Neurol., 1977. 57: pp. 613–21.CrossRefGoogle ScholarPubMed
Hartmann, R., , R. K. Shepherd, , S. Heid, and , R. Klinke, Response of the Primary Auditory Cortex to Electrical Stimulation of the Auditory Nerve in the Congenitally Deaf White Cat. Hear Res., 1997. 112: pp. 115–33.CrossRefGoogle ScholarPubMed
Hebb, D. O., The Organization of Behavior. 1949, Wiley: New York.Google Scholar
Heid, S., , T. K. Jahn-Siebert, , R. Klinke, , R. Hartmann, and , G. Langner, Afferent Projection Patterns in the Auditory Brainstem in Normal and Congenitally Deaf White Cats. Hear. Res., 1997. 110: pp. 191–199.CrossRefGoogle ScholarPubMed
Herrero, J. F., , J. M. Laird, and , J. A. Lopez-Garcia, Wind-up of Spinal Cord Neurones and Pain Sensation: Much Ado About Something?Progress in Neurobiology, 2000. 61(2): pp. 169–203.CrossRefGoogle ScholarPubMed
Hyson, R. L. and , E. W. Rubel, Activity-Dependent Regulation of a Ribosomal RNA Epitope in the Chick Cochlear Nucleus. Brain Res., 1995. 672(1–2): pp. 196–204.CrossRefGoogle ScholarPubMed
Illing, R. B., Activity-Dependent Plasticity in the Adult Auditory Brainstem. Audiol. Neuro-Otol., 2001. 6(6): pp. 319–345.CrossRefGoogle ScholarPubMed
Irvine, D. R. and , R. Rajan, Injury- and Use-Related Plasticity in the Primary Sensory Cortex of Adult Mammals: Possible Relationship to Perceptual Learning. Clin. Exp. Pharmacol. Physiol., 1996. 23(10–11): pp. 939–947.CrossRefGoogle ScholarPubMed
Irvine, D. R. and , R. Rajan, Injury-Induced Reorganization of Frequency Maps in Adult Auditory Cortex: The Role of Unmasking of Normally-Inhibited Inputs. Acta Otolaryng. (Stockh.), 1997. 532: pp. 39–45.CrossRefGoogle ScholarPubMed
Jastreboff, P. J., Phantom Auditory Perception (Tinnitus): Mechanisms of Generation and Perception. Neurosci. Res., 1990. 8: pp. 221–254.CrossRefGoogle ScholarPubMed
Jastreboff, P. J., Tinnitus as a Phantom Perception: Theories and Clinical Implications, in Mechanisms of Tinnitus, , J. A. Vernon and , A. R. Møller, Editors. 1995, Allyn & Bacon: Boston. pp. 73–93.Google Scholar
Jenkins, W. M., , M. M. Merzenich, , M. T. Ochs, , T. Allard, and , E. Guic-Robles, Functional Reorganization of Primary Somatosensory Cortex in Adult Owl Monkeys after Behaviorally Controlled Tactile Stimulation. J. Neurophysiol., 1990. 63(1): pp. 82–104.CrossRefGoogle ScholarPubMed
Johnson, M. H., Development of Human Brain Functions. Biol Psychiatry, 2003. 54(12): pp. 1312–6.CrossRefGoogle ScholarPubMed
Johnston, M. V., Clinical Disorders of Brain Plasticity. Brain Dev., 2004. 26(2): pp. 73–80.CrossRefGoogle ScholarPubMed
Kasamatsu, T., Adrenergic Regulation of Visuocortical Plasticity: A Role of the Locus Coeruleus System. Prog Brain Res, 1991. 88: pp. 599–616.CrossRefGoogle ScholarPubMed
Kilgard, M. P. and , M. M. Merzenich, Plasticity of Temporal Information Processing in the Primary Auditory Cortex. Nature Neurosci., 1998. 1: pp. 727–731.CrossRefGoogle ScholarPubMed
Kilgard, M. P. and , M. M. Merzenich, Cortical Map Reorganization Enabled by Nucleus Basalis Activity. Science, 1998. 279: pp. 1714–1718.CrossRefGoogle ScholarPubMed
Klinke, R., , R. Hartmann, , S. Heid, , J. Tillein, and , A. Kral, Plastic Changes in the Auditory Cortex of Congenitally Deaf Cats Following Cochlear Implantation. Audiol. Neurootol., 2001. 6: pp. 203–206.CrossRefGoogle ScholarPubMed
Koerber, H. R., , K. Mirnics, , A. M. Kavookjian, and , A. R. Light, Ultrastructural Analysis of Ectopic Synaptic Boutons Arising from Peripherally Regenerated Primary Afferent Fibers. J. Neurophysiol, 1999. 81: pp. 1636.CrossRefGoogle ScholarPubMed
Kohama, I., , K. Ishikawa, and , J. D. Kocsis, Synaptic Reorganization in the Substantia Gelatinosa after Peripheral Nerve Neuroma Formation: Aberrant Innervation of Lamina II Neurons by Beta Afferents. J. Neurosci., 2000. 20: pp. 1538–1549.CrossRefGoogle Scholar
Kopp, B., , A. Kunkel, , W. Muhlnickel, , K. Villringer, , E. Taub, and , H. Flor, Plasticity in the Motor System Related to Therapy-Induced Improvement of Movement after Stroke. NeuroReport, 1999. 10(4): pp. 807–10.CrossRefGoogle ScholarPubMed
Kral, A., , R. Hartmann, , J. Tillein, , S. Heid, and , R. Klinke, Congenital Auditory Deprivation Reduces Synaptic Activity within the Auditory Cortex in Layer Specific Manner. Cerebral Cortex, 2000. 10: pp. 714–726.CrossRefGoogle ScholarPubMed
Kral, A., , R. Hartmann, , J. Tillein, , S. Heid, and , R. Klinke, Delayed Maturation and Sensitive Periods in the Auditory Cortex. Audiol. Neurootol., 2001. 6(346–362).CrossRefGoogle ScholarPubMed
Kral, A., , R. Hartmann, , J. Tillein, , S. Heid, and , R. Klinke, Hearing after Congenital Deafness: Central Auditory Plasticity and Sensory Deprivation. Cereb. Cortex, 2002. 12: pp. 797–807.CrossRefGoogle ScholarPubMed
Kreutzberg, G. W., Neurobiology of Regeneration and Degeneration the Facial Nerve, in The Facial Nerve, , M. May, Editor. 1986, Thieme: New York.Google Scholar
LeDoux, J. E., Brain Mechanisms of Emotion and Emotional Learning. Curr. Opin. Neurobiol., 1992. 2: pp. 191–197.CrossRefGoogle ScholarPubMed
Lenarz, T., , R. Hartrampf, , R. D. Battmer, , B. Bertram, and , A. Lesinski, Cochlear Implant Management of Young Children. Laryngorhinootologie, 1996. 75(12): pp. 719–26.CrossRefGoogle ScholarPubMed
Lenz, F. A., , J. I. Lee, , I. M. Garonzik, , L. H. Rowland, , P. M. Dougherty, and , S. E. Hua, Plasticity of Pain-Related Neuronal Activity in the Human Thalamus. Progr. Brain Res., 2000. 129: pp. 253–273.Google ScholarPubMed
Lu, B., Pro-Region of Neurotrophines: Role in Synaptic Modulation. Neuron, 2003. 39(5): pp. 735–8.CrossRefGoogle Scholar
Lu, Y., , P. Monsivais, , B. L. Tempel, and , E. W. Rubel, 2004, 470:3–1906, Activity-Dependent Regulation of the Potassium Channel Subunits Kv1.1 and Kv3.1. J. Comp. Neurol., 2004. 470: pp. 93–106.CrossRefGoogle ScholarPubMed
Lynch, M. A., Long-Term Potentiation and Memory. Physiol Rev, 2004. 84(1): pp. 87–136.CrossRefGoogle ScholarPubMed
Maixner, W., , R. Fillingim, , A. Sigurdsson, , S. Kincaid, and , S. Silva, Sensitivity of Patients with Painful Temporomandibular Disorders to Experimentally Evoked Pain: Evidence for Altered Temporal Summation of Pain. Pain., 1998. 76(1–2): pp. 71–81.CrossRefGoogle ScholarPubMed
Margolis, R. L., , D. M. Chuang, and , R. L. M. Post, Programmed Cell Death: Implications for Neuropsychiatric Disorders. Biol. Psychiatry., 1994. 35(12): pp. 946–56.CrossRefGoogle ScholarPubMed
McLean, J. H. and , M. T. Shipley, Postnatal Development of the Noradrenergic Projection from Locus Coeruleus to the Olfactory Bulb in the Rat. J. Comp Neurol., 1991. 304(3): pp. 467–77.CrossRefGoogle ScholarPubMed
Melzack, R. and , P. D. Wall, Pain Mechanisms: A New Theory. Science, 1965. 150: pp. 971–979.CrossRefGoogle ScholarPubMed
Melzack, R., Phantom Limbs. Sci. Am., 1992. 266: pp. 120–126.CrossRefGoogle ScholarPubMed
Mendell, L. M., Modifiability of Spinal Synapses. Physiol Rev, 1984. 64: pp. 260–324.CrossRefGoogle ScholarPubMed
Merzenich, M. M., , J. H. Kaas, , J. Wall, , R. J. Nelson, , M. Sur, and , D. Felleman, Topographic Reorganization of Somatosensory Cortical Areas 3b and 1 in Adult Monkeys Following Restricted Deafferentiation. Neuroscience, 1983. 8(1): pp. 3–55.CrossRefGoogle Scholar
Miller, J. M., , C. S. Watson, and , W. P. Covell, Deafening Effects of Noise on the Cat. Acta Oto Laryng. Suppl. 176, 1963: pp. 1–91.Google Scholar
Møller, A. R. and , P. J. Jannetta, On the Origin of Synkinesis in Hemifacial Spasm: Results of Intracranial Recordings. J. Neurosurg., 1984. 61: pp. 569–576.CrossRefGoogle ScholarPubMed
Møller, A. R., , M. B. Møller, and , M. Yokota, Some Forms of Tinnitus May Involve the Extralemniscal Auditory Pathway. Laryngoscope, 1992. 102: pp. 1165–1171.CrossRefGoogle ScholarPubMed
Møller, A. R., Similarities between Chronic Pain and Tinnitus. Am. J. Otol., 1997. 18: pp. 577–585.Google ScholarPubMed
Møller, A. R. and , T. Pinkerton, Temporal Integration of Pain from Electrical Stimulation of the Skin. Neurol. Res, 1997. 19: pp. 481–488.CrossRefGoogle Scholar
Møller, A. R., Similarities between Severe Tinnitus and Chronic Pain. J. Amer. Acad. Audiol., 2000. 11: pp. 115–124.Google ScholarPubMed
Møller, A. R., Hearing: Its Physiology and Pathophysiology. 2000, San Diego: Academic Press.Google Scholar
Møller, A. R., Symptoms and Signs Caused by Neural Plasticity. Neurol. Res., 2001. 23: pp. 565–572.CrossRefGoogle ScholarPubMed
Møller, A. R. and , P. Rollins, The Non-Classical Auditory System Is Active in Children but Not in Adults. Neurosci. Lett., 2002. 319: pp. 41–44.CrossRefGoogle Scholar
Møller, A. R., Sensory Systems: Anatomy and Physiology. 2003, Amsterdam: Academic Press.Google Scholar
Møller, A. R., Pathophysiology of Tinnitus, in Otolaryngologic Clinics of North America, , A. Sismanis, Editor. 2003, W. B. Saunders: Amsterdam, pp. 249–266.Google Scholar
Møller, A. R., , J. K. Kern and B. Grannemann, Are the Non-Classical Auditory Pathways Involved in Autism and PDD?Neurol. Res., 2005. 27.Google ScholarPubMed
Morest, D. K., , M. D. Ard, and , D. Yurgelun-Todd, Degeneration in the Central Auditory Pathways after Acoustic Deprivation or Over-Stimulation in the Cat. Anat. Rec., 1979. 193: pp. 750.Google Scholar
Morest, D. K. and , B. A. Bohne, Noise-Induced Degeneration in the Brain and Representation of Inner and Outer Hair Cells. Hear. Res., 1983. 9: pp. 145–152.CrossRefGoogle ScholarPubMed
Mufson, E. J., , S. D. Ginsberg, , M. D. Ikonomovic, and , S. T. Dekosky, Human Cholinergic Basal Forebrain: Chemoanatomy and Neurologic Dysfunction. J. Chem Neuroanat., 2003. 26(4): pp. 233–42.CrossRefGoogle ScholarPubMed
Murray, T., Eye Muscles Surgery. Curr Opin Ophthalmol., 1999. 10(5): pp. 327–32.CrossRefGoogle ScholarPubMed
Nicoll, R. A. and , R. C. Malenka, Expression Mechanisms Underlying N-methyl-D-aspartate Receptor-Dependent Long-Term Potentiation. Ann. N.Y. Acad. Sci., 1999. 868: pp. 515–25.CrossRefGoogle Scholar
Nucci, C., , S. Piccirilli, , R. Nistico, , L. A. Morrone, , L. Cerulli, and , G. Bagetta, Apoptosis in the Mechanisms of Neuronal Plasticity in the Developing Visual System. Eur. J. Ophthalmol., 2003. 13(Suppl. 3): pp. 36–43.CrossRefGoogle ScholarPubMed
Plautz, E. J., , S. Barbay, , S. B. Frost, , K. M. Friel, , N. Dancause, , E. V. Zoubina, , A. M. Stowe, , B. M. Quaney, and , R. J. Nudo, Post-Infarct Cortical Plasticity and Behavioral Recovery Using Concurrent Cortical Stimulation and Rehabilitative Training: A Feasibility Study in Primates. Neurol. Res., 2003. 25: pp. 801–810.CrossRefGoogle ScholarPubMed
Popoli, M., , M. Gennarelli, and , G. Racagni, Modulation of Synaptic Plasticity by Stress and Antidepressants. Bipolar Disorders, 2002. 4(3): pp. 166–82.CrossRefGoogle ScholarPubMed
Price, D. D., Psychological and Neural Mechanisms of Pain. 1988, New York: Raven.Google Scholar
Price, D. D., , S. Long, and , C. Huitt, Sensory Testing of Pathophysiological Mechanisms of Pain in Patients with Reflex Sympathetic Dystrophy. Pain, 1992. 49: pp. 163–173.CrossRefGoogle ScholarPubMed
Price, D. D., Psychological and Neural Mechanisms of the Affective Dimension of Pain. Science, 2000. 288: pp. 1769–1772.CrossRefGoogle ScholarPubMed
Rajan, R. and , D. R. Irvine, Neuronal Responses across Cortical Field Primary auditory cortex in Plasticity Induced by Peripheral Auditory Organ Damage. Audiol. Neurootol., 1998. 3: pp. 123–144.CrossRefGoogle ScholarPubMed
Ren, K. and , R. Dubner, Central Nervous System Plasticity and Persistent Pain. J. Orofacial Pain, 1999. 13(3): pp. 164–71.Google ScholarPubMed
Rice, D. and , S. J. Barone, Critical Periods of Vulnerability for the Developing Nervous System: Evidence from Humans and Animal Models. Environ Health Perspect., 2000. 108 Suppl 3: pp. 511–33.CrossRefGoogle ScholarPubMed
Robertson, D. and , D. R. Irvine, Plasticity of Frequency Organization in Auditory Cortex of Guinea Pigs with Partial Unilateral Deafness. J. Comp. Neurol., 1989. 282(3): pp. 456–471.CrossRefGoogle ScholarPubMed
Rubel, E. and , B. Fritzsch, Auditory System Development: Primary Auditory Neurons and Their Targets. Ann. Rev. Neurosci, 2002. 25: pp. 51–101.CrossRefGoogle ScholarPubMed
Rubel, E. W., , A. N. Popper, and , R. R. Fay, eds. Development of the Auditory System. 1998, Springer: New York.CrossRefGoogle Scholar
Sanes, D. H. and E. J. Walsh, Development of Central Auditory Processing, in Development of the Auditory System, , E. W. Rubel, , A. N. Popper, and , R. R. Fay, Editors. 1998, Springer: New York. pp. 271–314.Google Scholar
Sarvey, J. M., , E. C. Burgard, and , G. Decker, Long-Term Potentiation: Studies in the Hippocampal Slice. J. Neurosci. Methods, 1989. 28(1–2): pp. 109–24.CrossRefGoogle ScholarPubMed
Schinder, A. F. and , M. Poo, The Neurotrophin Hypothesis of Synaptic Plasticity. Trends Neurosci., 2000. 23(12): pp. 639–45.CrossRefGoogle ScholarPubMed
Sen, C. N. and , A. R. Møller, Signs of Hemifacial Spasm Created by Chronic Periodic Stimulation of the Facial Nerve in the Rat. Exp. Neurol., 1987. 98: pp. 336–349.CrossRefGoogle ScholarPubMed
Sharma, A., , M. F. Dorman, and , A. J. Spahr, Rapid Development of Cortical Auditory Evoked Potentials after Early Cochlear Implantation. Neuroreport, 2002. 13(10): pp. 1365–8.CrossRefGoogle ScholarPubMed
Sharma, A., , M. F. Dorman, and , A. J. Spahr, A Sensitive Period for the Development of the Central Auditory System in Children with Cochlear Implants: Implications for Age of Implantation. Ear Hear., 2002. 23(6): pp. 532–9.CrossRefGoogle ScholarPubMed
Sie, K. C. Y. and , E. W. Rubel, Rapid Changes in Protein Synthesis and Cell Size in the Cochlear Nucleus Following Eighth Nerve Activity Blockade and Cochlea Ablation. J. Comp. Neurol., 1992. 320: pp. 501–508.CrossRefGoogle ScholarPubMed
Stent, G. S., A Physiological Mechanism for Hebb's Postulate of Learning. Proc. Nat. Acad. Sci, 1973. 70(4): pp. 997–1001.CrossRefGoogle Scholar
Sterr, A., , M. M. Muller, , T. Elbert, , B. Rockstroh, , C. Pantev, and , E. Taub, Perceptual Correlates of Changes in Cortical Representation of Fingers in Blind Multifinger Braille Readers. J. Neurosci., 1998. 18(11): pp. 4417–23.CrossRefGoogle ScholarPubMed
Syka, J. and , J. Popelar, Noise Impairment in the Guinea Pig. I. Changes in Electrical Evoked Activity Along the Auditory Pathway. Hear. Res., 1982. 8: pp. 263–272.CrossRefGoogle ScholarPubMed
Syka, J., , N. Rybalko, and , J. Popelar, Enhancement of the Auditory Cortex Evoked Responses in Awake Guinea Pigs after Noise Exposure. Hear. Res., 1994. 78: pp. 158–168.CrossRefGoogle ScholarPubMed
Syka, J., Plastic Changes in the Central Auditory System after Hearing Loss, Restoration of Function, and During Learning. Physiol Rev, 2002. 82(3): pp. 601–36.CrossRefGoogle ScholarPubMed
Szczepaniak, W. S. and , A. R. Møller, Evidence of Neuronal Plasticity within the Inferior Colliculus after Noise Exposure: A Study of Evoked Potentials in the Rat. Electroenceph. Clin. Neurophysiol., 1996. 100: pp. 158–164.CrossRefGoogle ScholarPubMed
Thompson, S. W. N., , A. E. King, and , C. J. Woolf, Activity-Dependent Changes in Rat Ventral Horn Neurons in Vitro: Summation of Prolonged Afferent Evoked Post-Synaptic Depolarization Produce a d-APV Sensitive Wind-Up. Eur. J. Neurosci., 1990. 2: pp. 638–649.CrossRefGoogle Scholar
Tomimatsu, Y., , S. Idemoto, , S. Moriguchi, , S. Watanabe, and , H. Nakanishi, Proteases Involved in Long-Term Potentiation. Life Sci., 2002. 72(4–5): pp. 355–61.CrossRefGoogle ScholarPubMed
Turner, J. G. and , J. F. Willott, Exposure to an Augmented Acoustic Environment Alters Auditory Function in Hearing-Impaired DBA/2J Mice. Hear. Res., 1998. 118: pp. 101–113.CrossRefGoogle Scholar
Wada, J. A., Kindling 2. 1981, Raven Press: New York.Google Scholar
Wall, J. T., , J. H. Kaas, , M. Sur, , R. J. Nelson, , D. J. Felleman, and , M. M. Merzenich, Functional Reorganization in Somatosensory Cortical Areas 3b and 1 of Adult Monkeys after Median Nerve Repair: Possible Relationships to Sensory Recovery in Humans. J. Neurosci., 1986. 6(1): pp. 218–233.CrossRefGoogle ScholarPubMed
Wall, J. T., , J. Xu, and , X. Wang, Human Brain Plasticity: An Emerging View of the Multiple Substrates and Mechanisms That Cause Cortical Changes and Related Sensory Dysfunctions after Injuries of Sensory Inputs from the Body. Brain Res. Rev., 2002. 39(2–3): pp. 181–215.CrossRefGoogle ScholarPubMed
Wall, P. D., The Presence of Ineffective Synapses and Circumstances Which Unmask Them. Phil. Trans. Royal Soc. (Lond.), 1977. 278: pp. 361–372.CrossRefGoogle Scholar
Wang, J., , S. L. McFadden, , D. M. Caspary, and , R. J. Salvi, Gamma-Aminobutyric Acid Circuits Shape Response Properties of Audiory Cortex Neurons. Brain Res., 2002. 944(219–31).CrossRefGoogle Scholar
Weiss, T., , W. H. Miltner, , R. Huonker, , R. Friedel, , I. Schmidt, and , E. Taub, Rapid Functional Plasticity of the Somatosensory Cortex after Finger Amputation. Exp. Brain Res., 2000. 134(2): pp. 199–203.CrossRefGoogle ScholarPubMed
Wiesel, T. N. and , D. H. Hubel, Effects of Visual Deprivation on Morphology and Physiology of Cells in the Cats Lateral Geniculate Body. J. Neurophysiol., 1963. 26: pp. 973–93.CrossRefGoogle ScholarPubMed
Wiesel, T. N. and , D. H. Hubel, Effects of Monocular Deprivation in Kittens. Naunyn Schmiedebergs Arch Pharmacol., 1964. 248: pp. 492–7.Google Scholar
Wiesel, T. N. and , D. H. Hubel, Extent of Recovery from the Effects of Visual Deprivation in Kittens. J. Neurophysiol., 1965. 28: pp. 1060–1072.CrossRefGoogle ScholarPubMed
Wiesel, T. N. and , D. H. Hubel, Comparison of the Effects of Unilateral and Bilateral Eye Closure on Cortical Unit Responses in Kittens. J. Neurophysiol., 1965. 28(6): pp. 1029–40.CrossRefGoogle ScholarPubMed
Willer, J. C., Relieving Effect of Transdermal electric nerve stimulation on Painful Muscle Contraction Produced by an Impairment of Reciprocal Innervation: An Electrophysiological Analysis. Pain, 1988. 32: pp. 271–274.CrossRefGoogle Scholar
Willott, J. F. and , S. M. Lu, Noise Induced Hearing Loss Can Alter Neural Coding and Increase Excitability in the Central Nervous System. Science, 1981. 16: pp. 1331–1332.Google Scholar
Willott, J. F., , T. H. Chisolm, and , J. J. Lister, Modulation of Presbycusis: Current Status and Future Directions. Audiol. Neurotol., 2001. 6: pp. 231–249.CrossRefGoogle ScholarPubMed
Wolpaw, J. R., Acquisition and Maintenance of the Simplest Motor Skill: Investigation of Central nervous system Mechanisms. Med. Sci. Sports Exerc., 1994. 26(12): pp. 1475–9.CrossRefGoogle Scholar
Woolf, C. J., Evidence of a Central Component of Postinjury Pain Hypersensitivity. Nature, 1983. 308: pp. 686–688.CrossRefGoogle Scholar
Woolf, C. J. and , S. W. N. Thompson, The Induction and Maintenance of Central Sensitization Is Dependent on N-Methyl-D-Aspartic Acid Receptor Activation: Implications for the Treatment of Post-Injury Pain Hypersensitivity States. Pain, 1991. 44: pp. 293–299.CrossRefGoogle ScholarPubMed
Woolf, C. J., , P. Shortland, and , R. E. Cogershall, Peripheral Nerve Injury Triggers Central Sprouting of Myelinated Afferents. Nature, 1992. 355: pp. 75–78.CrossRefGoogle ScholarPubMed
Woolf, C. J. and , R. J. Mannion, Neuropathic Pain: Aetiology, Symptoms, Mechanisms, and Managements. The Lancet, 1999. 353: pp. 1959–1964.CrossRefGoogle Scholar
Woolf, C. J. and , M. W. Salter, Neural Plasticity: Increasing the Gain in Pain. Science, 2000. 288: pp. 1765–1768.CrossRefGoogle ScholarPubMed
Zwolan, T. A., , C. M. Ashbaugh, , A. Alarfaj, , P. R. Kileny, , H. A. Arts, , H. K. El-Kashlan, and , S. A. Telian, Pediatric Cochlear Implant Patient Performance as a Function of Age at Implantation. Otol. Neurotol., 2004. 25(2): pp. 112–20.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×