Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-18T19:10:25.498Z Has data issue: false hasContentIssue false

48 - Friedreich's ataxia and other autosomal recessive ataxias

from Part VIII - Cerebellar degenerations

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Hélène Puccio
Affiliation:
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/Université Louis Pasteur, Hôpitaux Universitaires de Strasbourg, France
Michel Koenig
Affiliation:
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/Université Louis Pasteur, Hôpitaux Universitaires de Strasbourg, France
Get access

Summary

Autosomal recessive neurodegenerative ataxias are classified according to the major site of degeneration, which can be the cerebellum or the spinal cord. In the latter case, affection of the posterior columns and of spinocerebellar tracts leads to sensory (proprioceptive) and cerebellar ataxia. A third group of affections recently identified associates cerebellar degeneration and sensorimotor peripheral neuropathy, therefore resulting in sensory and cerebellar ataxia associated with neuromuscular weakness. The first group is dominated by ataxia-telangiectasia (A-T), where cerebellar atrophy is associated with immune deficiency and susceptibility to develop malignancies. Ataxia-telangiectasia and related disorders will be developed in the following chapter. Another member of the first group is spastic ataxia of the Charlevoix–Saguenay region (ARSACS). The second group is dominated by Friedreich's ataxia (FRDA), recognized since the XIXth century. Rare forms of spinal cord ataxias include the inherited vitamin E deficiencies (isolated vitamin E deficiency (AVED) and abetalipoproteinemia (ABL)), Refsum disease (RD), infantile onset spinocerebellar ataxia (IOSCA), and ataxia + blindness + deafness (SCABD). The group of cerebellar atrophy with sensorimotor neuropathy (third group) comprises only very recently identified conditions, such as ataxia + oculomotor apraxia, forms 1 and 2 (AOA1 and AOA2) and spinocerebellar ataxia + neuropathy (SCAN1). All advances on the delineation of the rare forms of recessive ataxias were made thanks to the development of positional cloning strategies based on homozygosity mapping of consanguineous families and on the development of the human genome project.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 719 - 737
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamec, J., Rusnak, F., Owen, W. G.et al. (2000). Iron-dependent self-assembly of recombinant yeast frataxin: implications for Friedreich ataxia. Am. J. Hum. Genet., 67, 549–62CrossRefGoogle ScholarPubMed
Adinolfi, S., Trifuoggi, M., Politou, A. S., Martin, S. & Pastore, A. (2002). A structural approach to understanding the iron-binding properties of phylogenetically different frataxins. Hum. Mol. Genet., 11, 1865–77CrossRefGoogle ScholarPubMed
Aicardi, J., Barbosa, C., Andermann, E.et al. (1988). Ataxia-ocular motor apraxia: a syndrome mimicking ataxia-telangiectasia. Ann. Neurol., 24, 497–502CrossRefGoogle ScholarPubMed
Allikmets, R., Raskind, W. H., Hutchinson, A., Schueck, N. D., Dean, M. & Koeller, D. M. (1999). Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A). Hum. Mol. Genet., 8, 743–9CrossRefGoogle Scholar
Amiel, J., Maziere, J. C., Beucler, I.et al. (1995). Familial isolated vitamin E deficiency. Extensive study of a large family with a 5-year therapeutic follow-up. J. Inherit. Metab. Dis., 18, 333–40CrossRefGoogle ScholarPubMed
Arita, M., Sato, Y., Miyata, A.et al. (1995). Human alpha-tocopherol transfer protein: cDNA cloning, expression and chromosomal localization. Biochem. J., 306, 437–43CrossRefGoogle ScholarPubMed
Babcock, M., Silva, D., Oaks, R.et al. (1997). Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science, 276, 1709–12CrossRefGoogle ScholarPubMed
Barbot, C., Coutinho, P., Chorao, R.et al. (2001). Recessive ataxia with ocular apraxia: review of 22 Portuguese patients. Arch. Neurol., 58, 201–5CrossRefGoogle ScholarPubMed
Bassen, F. A. & Kornzweig, A. L. (1950). Malformation of the erythrocytes in a case of atypical retinitis pigmentosa. Blood, 5, 381–7Google Scholar
Ben Hamida, C., Doerflinger, N., Belal, S.et al. (1993a). Localization of Friedreich ataxia phenotype with selective vitamin E deficiency to chromosome 8q by homozygosity mapping. Nat. Genet., 5, 195–200CrossRefGoogle Scholar
Ben Hamida, M., Belal, S., Sirugo, G.et al. (1993b). Friedreich's ataxia phenotype not linked to chromosome 9 and associated with selective autosomal recessive vitamin E deficiency in two inbred Tunisian families. Neurology, 43, 2179–83CrossRefGoogle Scholar
Benomar, A., Yahyaoui, M., Meggouh, F.et al. (2002). Clinical comparison between AVED patients with 744 del A mutation and Friedreich ataxia with GAA expansion in 15 Moroccan families. J. Neurol. Sci., 198, 25–9CrossRefGoogle Scholar
Berciano, J., Mateo, I., Pablos, C., Polo, J. M. & Combarros, O. (2002). Friedreich ataxia with minimal GAA expansion presenting as adult-onset spastic ataxia. J. Neurol. Sci., 194, 75–82CrossRefGoogle ScholarPubMed
Bidichandani, S. I., Ashizawa, T. & Patel, P. I. (1997). Atypical Friedreich ataxia caused by compound heterozygosity for a novel missense mutation and the GAA triplet-repeat expansion. Am. J. Hum. Genet., 60, 1251–6Google ScholarPubMed
Bidichandani, S. I., Ashizawa, T. & Patel, P. I. (1998). The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am. J. Hum. Genet., 62, 111–21CrossRefGoogle ScholarPubMed
Bomont, P., Watanabe, M., Gershoni-Barush, R.et al. (2000). Homozygosity mapping of spinocerebellar ataxia with cerebellar atrophy and peripheral neuropathy to 9q33–34, and with hearing impairment and optic atrophy to 6p21–23. Eur. J. Hum. Genet., 8, 986–90CrossRefGoogle ScholarPubMed
Bouchard, J. P., Barbeau, A., Bouchard, R. & Bouchard, R. W. (1978). Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Can. J. Neurol. Sci., 5, 61–9Google ScholarPubMed
Bouchard, R. W., Bouchard, J. P., Bouchard, R. & Barbeau, A. (1979). Electroencephalographic findings in Friedreich's ataxia and autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). Can. J. Neurol. Sci., 6, 191–4CrossRefGoogle Scholar
Bouchard, J. P., Richter, A., Mathieu, J.et al. (1998). Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Neuromuscul. Disord., 8, 474–9CrossRefGoogle ScholarPubMed
Bradley, J. L., Blake, J. C., Chamberlain, S., Thomas, P. K., Cooper, J. M. & Schapira, A. H. (2000). Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia. Hum. Mol. Genet., 9, 275–82CrossRefGoogle ScholarPubMed
Branda, S. S., Cavadini, P., Adamec, J., Kalousek, F., Taroni, F. & Isaya, G. (1999). Yeast and human frataxin are processed to mature form in two sequential steps by the mitochondrial processing peptidase. J. Biol. Chem., 274, 22763–9CrossRefGoogle ScholarPubMed
Burck, U., Goebel, H. H., Kuhlendahl, H. D., Meier, C. & Goebel, K. M. (1981). Neuromyopathy and vitamin E deficiency in man. Neuropediatrics, 12, 267–78CrossRefGoogle ScholarPubMed
Caldecott, K. W. (2003). DNA single-strand break repair and spinocerebellar ataxia. Cell, 112, 7–10CrossRefGoogle ScholarPubMed
Campuzano, V., Montermini, L., Molto, M. D.et al. (1996). Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science, 271, 1423–7CrossRefGoogle ScholarPubMed
Campuzano, V., Montermini, L., Lutz, Y.et al. (1997). Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum. Mol. Genet., 6, 1771–80CrossRefGoogle ScholarPubMed
Cavadini, P., Adamec, J., Taroni, F., Gakh, O. & Isaya, G. (2000a). Two-step processing of human frataxin by mitochondrial processing peptidase. Precursor and intermediate forms are cleaved at different rates. J. Biol. Chem., 275, 41469–75CrossRefGoogle Scholar
Cavadini, P., Gellera, C., Patel, P. I. & Isaya, G. (2000b). Human frataxin maintains mitochondrial iron homeostasis in Saccharomyces cerevisiae. Hum. Mol. Genet., 9, 2523–30CrossRefGoogle Scholar
Cavadini, P., O'Neill, H. A., Benada, O. & Isaya, G. (2002). Assembly and iron-binding properties of human frataxin, the protein deficient in Friedreich ataxia. Hum. Mol. Genet., 11, 217–27CrossRefGoogle ScholarPubMed
Cavalier, L., Ouahchi, K., Kayden, H. J.et al. (1998). Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families. Am. J. Hum. Genet., 62, 301–10CrossRefGoogle Scholar
Chantrel-Groussard, K., Geromel, V., Puccio, H.et al. (2001). Disabled early recruitment of antioxidant defenses in Friedreich's ataxia. Hum. Mol. Genet., 10, 2061–7CrossRefGoogle ScholarPubMed
Chen, O. S., Hemenway, S. & Kaplan, J. (2002). Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: evidence that Yfh1p affects Fe-S cluster synthesis. Proc. Natl Acad. Sci., USA, 99, 12321–6CrossRefGoogle ScholarPubMed
Cho, S. J., Lee, M. G., Yang, J. K., Lee, J. Y., Song, H. K. & Suh, S. W. (2000). Crystal structure of Escherichia coli CyaY protein reveals a previously unidentified fold for the evolutionarily conserved frataxin family. Proc. Natl Acad. Sci., USA, 97, 8932–7CrossRefGoogle ScholarPubMed
Christodoulou, K., Deymeer, F., Serdaroglu, P.et al. (2001). Mapping of the second Friedreich's ataxia (FRDA2) locus to chromosome 9p23–p11: evidence for further locus heterogeneity. Neurogenetics, 3, 127–32CrossRefGoogle ScholarPubMed
Cossee, M., Schmitt, M., Campuzano, V.et al. (1997). Evolution of the Friedreich's ataxia trinucleotide repeat expansion: founder effect and premutations. Proc. Natl Acad. Sci., USA, 94, 7452–7CrossRefGoogle ScholarPubMed
Cossee, M., Durr, A., Schmitt, M.et al. (1999). Friedreich's ataxia: point mutations and clinical presentation of compound heterozygotes. Ann. Neurol., 45, 200–63.0.CO;2-U>CrossRefGoogle ScholarPubMed
Cossee, M., Puccio, H., Gansmuller, A.et al. (2000). Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum. Mol. Genet., 9, 1219–26CrossRefGoogle ScholarPubMed
Date, H., Onodera, O., Tanaka, H.et al. (2001). Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat. Genet., 29, 184–8CrossRefGoogle Scholar
Delatycki, M. B., Camakaris, J., Brooks, H.et al. (1999a). Direct evidence that mitochondrial iron accumulation occurs in Friedreich ataxia. Ann. Neurol., 45, 673–53.0.CO;2-Q>CrossRefGoogle Scholar
Delatycki, M. B., Paris, D. B., Gardner, R. J.et al. (1999b). Clinical and genetic study of Friedreich ataxia in an Australian population. Am. J. Med. Genet., 87, 168–743.0.CO;2-2>CrossRefGoogle Scholar
Dhe-Paganon, S., Shigeta, R., Chi, Y. I., Ristow, M. & Shoelson, S. E. (2000). Crystal structure of human frataxin. J. Biol. Chem., 275, 30753–6CrossRefGoogle ScholarPubMed
Durr, A., Cossee, M., Agid, Y.et al. (1996). Clinical and genetic abnormalities in patients with Friedreich's ataxia. N. Engl. J. Med., 335, 1169–75CrossRefGoogle ScholarPubMed
El Euch-Fayache, G., Lalani, I., Amouri, R.et al. (2003). Phenotypic features and genetic findings in sacsin related autosomal recessive ataxia in Tunisia. Arch. Neurol., 60, 982–8CrossRefGoogle ScholarPubMed
Emond, M., Lepage, G., Vanasse, M. & Pandolfo, M. (2000). Increased levels of plasma malondialdehyde in Friedreich ataxia. Neurology, 55, 1752–3CrossRefGoogle ScholarPubMed
Engert, J. C., Berube, P., Mercier, J.et al. (2000). ARSACS, a spastic ataxia common in northeastern Quebec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat. Genet., 24, 120–5CrossRefGoogle Scholar
Epplen, C., Epplen, J. T., Frank, G., Miterski, B., Santos, E. J. & Schols, L. (1997). Differential stability of the (GAA)n tract in the Friedreich ataxia (STM7) gene. Hum. Genet., 99, 834–6CrossRefGoogle ScholarPubMed
Filla, A., Michele, G., Cavalcanti, F.et al. (1996). The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am. J. Hum. Genet., 59, 554–60Google ScholarPubMed
Finocchiaro, G., Baio, G., Micossi, P., Pozza, G. & di Donato, S. (1988). Glucose metabolism alterations in Friedreich's ataxia. Neurology, 38, 1292–6CrossRefGoogle ScholarPubMed
Forrest, S. M., Knight, M., Delatycki, M. B.et al. (1998). The correlation of clinical phenotype in Friedreich ataxia with the site of point mutations in the FRDA gene. Neurogenetics, 1, 253–7CrossRefGoogle ScholarPubMed
Foury, F. (1999). Low iron concentration and aconitase deficiency in a yeast frataxin homologue deficient strain. FEBS Lett., 456, 281–4CrossRefGoogle Scholar
Foury, F. & Cazzalini, O. (1997). Deletion of the yeast homologue of the human gene associated with Friedreich's ataxia elicits iron accumulation in mitochondria. FEBS Lett., 411, 373–7CrossRefGoogle Scholar
Foury, F. & Talibi, D. (2001). Mitochondrial control of iron homeostasis. A genome wide analysis of gene expression in a yeast frataxin-deficient strain. J. Biol. Chem., 276, 7762–8CrossRefGoogle Scholar
Friedreich, N. (1863a). Über degenerative Atrophie der spinalen Hinterstränge. Virchows Arch. Pathol. Anat., 26, 433–59CrossRefGoogle Scholar
Friedreich, N. (1863b). Über degenerative Atrophie der spinalen Hinterstränge. Virchows Arch. Pathol. Anat., 27, 1–26CrossRefGoogle Scholar
Geissler, A., Krimmer, T., Schonfisch, B., Meijer, M. & Rassow, J. (2000). Biogenesis of the yeast frataxin homolog Yfh1p. Tim44-dependent transfer to mtHsp70 facilitates folding of newly imported proteins in mitochondria. Eur. J. Biochem., 267, 3167–80CrossRefGoogle Scholar
Gellera, C., Pareyson, D., Castellotti, B.et al. (1997). Very late onset Friedreich's ataxia without cardiomyopathy is associated with limited GAA expansion in the X25 gene. Neurology, 49, 1153–5CrossRefGoogle ScholarPubMed
Geschwind, D. H., Perlman, S., Grody, W. W.et al. (1997). Friedreich's ataxia GAA repeat expansion in patients with recessive or sporadic ataxia. Neurology, 49, 1004–9CrossRefGoogle ScholarPubMed
Gibberd, F. B. & Wierzbicki, A. S. (2000). Heredopathia atactica polyneuritiformis – Refsum disease. In Handbook of Ataxia Disorders, Vol. 50, ed. T. Klockgether, New York: Marcel Dekker, pp. 235–256
Gibson, T. J., Koonin, E. V., Musco, G., Pastore, A. & Bork, P. (1996). Friedreich's ataxia protein: phylogenetic evidence for mitochondrial dysfunction. Trends Neurosci., 19, 465–8CrossRefGoogle ScholarPubMed
Gotoda, T., Arita, M., Arai, H.et al. (1995). Adult-onset spinocerebellar dysfunction caused by a mutation in the gene for the alpha-tocopherol-transfer protein. N. Engl. J. Med., 333, 1313–18CrossRefGoogle ScholarPubMed
Gottdiener, J. S., Hawley, R. J., Maron, B. J., Bertorini, T. F. & Engle, W. K. (1982). Characteristics of the cardiac hypertrophy in Friedreich's ataxia. Am. Heart J., 103, 525–31CrossRefGoogle ScholarPubMed
Gucuyener, K., Ozgul, K., Paternotte, C.et al. (2001). Autosomal recessive spastic ataxia of Charlevoix-Saguenay in two unrelated Turkish families. Neuropediatrics, 32, 142–6CrossRefGoogle ScholarPubMed
Hanna, M. G., Davis, M. B., Sweeney, M. G.et al. (1998). Generalized chorea in two patients harboring the Friedreich's ataxia gene trinucleotide repeat expansion. Mov. Disord., 13, 339–40CrossRefGoogle ScholarPubMed
Harding, A. E. (1981). Friedreich's ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain, 104, 589–620CrossRefGoogle ScholarPubMed
Harding, A. E., Matthews, S., Jones, S., Ellis, C. J., Booth, I. W. & Muller, D. P. (1985). Spinocerebellar degeneration associated with a selective defect of vitamin E absorption. N. Engl. J. Med., 313, 32–5CrossRefGoogle ScholarPubMed
Hayes, J. D. & McLellan, L. I. (1999). Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic. Res., 31, 273–300CrossRefGoogle ScholarPubMed
Huynen, M. A., Snel, B., Bork, P. & Gibson, T. J. (2001). The phylogenetic distribution of frataxin indicates a role in iron–sulfur cluster protein assembly. Hum. Mol. Genet., 10, 2463–8CrossRefGoogle ScholarPubMed
Inoue, N., Izumi, K., Mawatari, S., Shida, K. & Kuroiwa, Y. (1971). Congenital ocular motor apraxia and cerebellar degeneration – report of two cases. Rinsho Shinkeigaku, 11, 855–61Google Scholar
Isnard, R., Kalotka, H., Durr, A.et al. (1997). Correlation between left ventricular hypertrophy and GAA trinucleotide repeat length in Friedreich's ataxia. Circulation, 95, 2247–9CrossRefGoogle ScholarPubMed
Jampel, R. S. & Falls, H. F. (1958). Atypical retinitis pigmentosa, acanthocytosis, and heredodegenerative neuromuscular disease. Arch. Ophthalmol., 59, 818CrossRefGoogle Scholar
Jansen, G. A., Ofman, R., Ferdinandusse, S.et al. (1997). Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Nat. Genet., 17, 190–3CrossRefGoogle ScholarPubMed
Jiralerspong, S., Liu, Y., Montermini, L., Stifani, S. & Pandolfo, M. (1997). Frataxin shows developmentally regulated tissue-specific expression in the mouse embryo. Neurobiol. Dis., 4, 103–13CrossRefGoogle ScholarPubMed
Jiralerspong, S., Ge, B., Hudson, T. J. & Pandolfo, M. (2001). Manganese superoxide dismutase induction by iron is impaired in Friedreich ataxia cells. FEBS Lett., 509, 101–5CrossRefGoogle ScholarPubMed
Kallio, A. K. & Jauhiainen, T. (1985). A new syndrome of ophthalmoplegia, hypoacusis, ataxia, hypotonia and athetosis (OHAHA). Adv. Audiol., 3, 84–90Google Scholar
Kane, J. P. & Havel, R. J. (2001). Disorders of the biogenesis and secretion of lipoproteins containing the B apolipoproteins. In The Metabolic and Molecular Bases of Inherited Disease, Vol. II ed. C. Scriver, A. Beaudet, W. Sly, & D. Valle, New York: McGraw-Hill, pp. 2717–52
Kaptain, S., Downey, W. E., Tang, C.et al. (1991). A regulated RNA binding protein also possesses aconitase activity. Proc. Natl Acad. Sci., USA, 88, 10109–13CrossRefGoogle ScholarPubMed
Kayden, H. J. (1993). The neurologic syndrome of vitamin E deficiency: a significant cause of ataxia. Neurology, 43, 2167–9CrossRefGoogle ScholarPubMed
Kispal, G., Csere, P., Guiard, B. & Lill, R. (1997). The ABC transporter Atm1p is required for mitochondrial iron homeostasis. FEBS Lett., 418, 346–50CrossRefGoogle ScholarPubMed
Kispal, G., Csere, P., Prohl, C. & Lill, R. (1999). The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. Embo J., 18, 3981–9CrossRefGoogle ScholarPubMed
Klenk, E. & Kahlke, W. (1963). Uber das Vorkommen der 3.7.11.15-Tetramethyl hexadecansäure (Phytansäure) in den Cholesterinestern und anderen Lipoidfraktionen der Organe bei einem Krankheitsfall unbekannter Genese (Verdacht auf Heredopathia Atactica Polyneuritiformis Refsum Syndrome). Hoppe-Seyler Z. Physiol. Chem., 333, 133–9CrossRefGoogle Scholar
Knight, S. A., Sepuri, N. B., Pain, D. & Dancis, A. (1998). Mt-Hsp70 homolog, Ssc2p, required for maturation of yeast frataxin and mitochondrial iron homeostasis. J. Biol. Chem., 273, 18389–93CrossRefGoogle ScholarPubMed
Kohlschutter, A., Hubner, C., Jansen, W. & Lindner, S. G. (1988). A treatable familial neuromyopathy with vitamin E deficiency, normal absorption, and evidence of increased consumption of vitamin E. J. Inherit. Metab. Dis., 11, 149–52CrossRefGoogle ScholarPubMed
Kohlschutter, A. (2000). Abetalipoproteinemia. In Handbook of Ataxia Disorders, Vol. 50, ed. T. Klockgether, New York: Marcel Dekker, pp. 205–21
Koskinen, T., Santavuori, P., Sainio, K., Lappi, M., Kallio, A. K. & Pihko, H. (1994). Infantile onset spinocerebellar ataxia with sensory neuropathy: a new inherited disease. J. Neurol. Sci., 121, 50–6CrossRefGoogle ScholarPubMed
Koutnikova, H., Campuzano, V., Foury, F., Dolle, P., Cazzalini, O. & Koenig, M. (1997). Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat. Genet., 16, 345–51CrossRefGoogle ScholarPubMed
Koutnikova, H., Campuzano, V. & Koenig, M. (1998). Maturation of wild-type and mutated frataxin by the mitochondrial processing peptidase. Hum. Mol. Genet., 7, 1485–9CrossRefGoogle ScholarPubMed
Lamarche, J. B., Shapcott, D., Cote, M. & Lemieux, B. (1993). Cardiac iron deposits in Friedreich's ataxia. In Handbook of Cerebellar Diseases, ed. R. Lechtenberg NY: Marcel Dekker, Inc. pp. 453–8
Lamont, P. J., Davis, M. B. & Wood, N. W. (1997). Identification and sizing of the GAA trinucleotide repeat expansion of Friedreich's ataxia in 56 patients. Clinical and genetic correlates. Brain, 120, 673–80CrossRefGoogle ScholarPubMed
Laplante, P., Vanasse, M., Michaud, J., Geoffroy, G. & Brochu, P. (1984). A progressive neurological syndrome associated with an isolated vitamin E deficiency. Can. J. Neurol. Sci., 11, 561–4CrossRefGoogle ScholarPubMed
Larnaout, A., Belal, S., Zouari, M.et al. (1997). Friedreich's ataxia with isolated vitamin E deficiency: a neuropathological study of a Tunisian patient. Acta Neuropathol. (Berl.), 93, 633–7CrossRefGoogle ScholarPubMed
Levi, S., Corsi, B., Bosisio, M.et al. (2001). A human mitochondrial ferritin encoded by an intronless gene. J. Biol. Chem., 276, 24437–40CrossRefGoogle ScholarPubMed
Lodi, R., Hart, P. E., Rajagopalan, B.et al. (2001). Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich's ataxia. Ann. Neurol., 49, 590–6CrossRefGoogle ScholarPubMed
Lonnqvist, T., Paetau, A., Nikali, K., Boguslawski, K. & Pihko, H. (1998). Infantile onset spinocerebellar ataxia with sensory neuropathy (IOSCA): neuropathological features. J. Neurol. Sci., 161, 57–65CrossRefGoogle ScholarPubMed
Lonnqvist, T., Paetau, A., Pihko, H. & Nikali, K. (2000). Infantile-onset spinocerebellar ataxia. In Handbook of Ataxia Disorders, Vol. 50, ed. T. Klockgether, New York: Marcel Dekker, pp. 293–309
Lutz, T., Westermann, B., Neupert, W. & Herrmann, J. M. (2001). The mitochondrial proteins Ssq1 and Jac1 are required for the assembly of iron sulfur clusters in mitochondria. J. Mol. Biol., 307, 815–25CrossRefGoogle Scholar
Martinello, F., Fardin, P., Ottina, M.et al. (1998). Supplemental therapy in isolated vitamin E deficiency improves the peripheral neuropathy and prevents the progression of ataxia. J. Neurol. Sci., 156, 177–9CrossRefGoogle ScholarPubMed
McCabe, D. J., Ryan, F., Moore, D. P.et al. (2000). Typical Friedreich's ataxia without GAA expansions and GAA expansion without typical Friedreich's ataxia. J. Neurol., 247, 346–55CrossRefGoogle ScholarPubMed
Mihalik, S. J., Morrell, J. C., Kim, D., Sacksteder, K. A., Watkins, P. A. & Gould, S. J. (1997). Identification of PAHX, a Refsum disease gene. Nat. Genet., 17, 185–9CrossRefGoogle ScholarPubMed
Miranda, C. J., Santos, M. M., Ohshima, K.et al. (2002). Frataxin knockin mouse. FEBS Lett., 512, 291–7CrossRefGoogle ScholarPubMed
Monros, E., Molto, M. D., Martinez, F.et al. (1997). Phenotype correlation and intergenerational dynamics of the Friedreich ataxia GAA trinucleotide repeat. Am. J. Hum. Genet., 61, 101–10CrossRefGoogle ScholarPubMed
Montermini, L., Andermann, E., Labuda, M.et al. (1997a). The Friedreich ataxia GAA triplet repeat: premutation and normal alleles. Hum. Mol. Genet., 6, 1261–6CrossRefGoogle Scholar
Montermini, L., Richter, A., Morgan, K.et al. (1997b). Phenotypic variability in Friedreich ataxia: role of the associated GAA triplet repeat expansion. Ann. Neurol., 41, 675–82CrossRefGoogle Scholar
Moreira, M. C., Barbot, C., Tachi, N.et al. (2001a). Homozygosity mapping of Portuguese and Japanese forms of ataxia-oculomotor apraxia to 9p13, and evidence for genetic heterogeneity. Am. J. Hum. Genet., 68, 501–8CrossRefGoogle Scholar
Moreira, M. C., Barbot, C., Tachi, N.et al. (2001b). The gene mutated in ataxia – ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat. Genet., 29, 189–93CrossRefGoogle Scholar
Morvan, D., Komajda, M., Doan, L. D.et al. (1992). Cardiomyopathy in Friedreich's ataxia: a Doppler-echocardiographic study. Eur. Heart J., 13, 1393–8CrossRefGoogle ScholarPubMed
Mrissa, N., Belal, S., Hamida, C. B.et al. (2000). Linkage to chromosome 13q11–12 of an autosomal recessive cerebellar ataxia in a Tunisian family. Neurology, 54, 1408–14CrossRefGoogle Scholar
Muhlenhoff, U., Richhardt, N., Ristow, M., Kispal, G. & Lill, R. (2002). The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Hum. Mol. Genet., 11, 2025–36CrossRefGoogle Scholar
Musco, G., Stier, G., Kolmerer, B.et al. (2000). Towards a structural understanding of Friedreich's ataxia: the solution structure of frataxin. Structure Fold Des., 8, 695–707CrossRefGoogle ScholarPubMed
Nemeth, A. H., Bochukova, E., Dunne, E.et al. (2000). Autosomal recessive cerebellar ataxia with oculomotor apraxia (ataxia-telangiectasia-like syndrome) is linked to chromosome 9q34. Am. J. Hum. Genet., 67, 1320–6Google ScholarPubMed
Nikali, K., Suomalainen, A., Terwilliger, J., Koskinen, T., Weissenbach, J. & Peltonen, L. (1995). Random search for shared chromosomal regions in four affected individuals: the assignment of a new hereditary ataxia locus. Am. J. Hum. Genet., 56, 1088–95Google ScholarPubMed
Nikali, K., Isosomppi, J., Lonnqvist, T., Mao, J. I., Suomalainen, A. & Peltonen, L. (1997). Toward cloning of a novel ataxia gene: refined assignment and physical map of the IOSCA locus (SCA8) on 10q24. Genomics, 39, 185–91CrossRefGoogle ScholarPubMed
Ohshima, K., Montermini, L., Wells, R. D. & Pandolfo, M. (1998). Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J. Biol. Chem., 273, 14588–95CrossRefGoogle ScholarPubMed
Oppenheimer, D. & Esiri, M. (1992). Disease of the Basal Ganglia, Cerebellum and Motor Neurons, ed. Adams, J. H., Corsellis, J. A. N., Duchen, L. W., London: Arnold, p. 1015
Ouahchi, K., Arita, M., Kayden, H.et al. (1995). Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nat. Genet., 9, 141–5.CrossRefGoogle ScholarPubMed
Pandolfo, M. (1997). Friedreich's ataxia. Current Neurology, 17, 47–78Google Scholar
Park, S., Gakh, O., Mooney, S. M. & Isaya, G. (2002). The ferroxidase activity of yeast frataxin. J. Biol. Chem., 277, 38589–95CrossRefGoogle ScholarPubMed
Pasternac, A., Krol, R., Petitclerc, R., Harvey, C., Andermann, E. & Barbeau, A. (1980). Hypertrophic cardiomyopathy in Friedreich's ataxia: symmetric or asymmetric?Can. J. Neurol. Sci., 7, 379–82CrossRefGoogle ScholarPubMed
Peyronnard, J. M., Charron, L. & Barbeau, A. (1979). The neuropathy of Charlevoix-Saguenay ataxia: an electrophysiological and pathological study. Can. J. Neurol. Sci., 6, 199–203CrossRefGoogle ScholarPubMed
Piemonte, F., Pastore, A., Tozzi, G.et al. (2001). Glutathione in blood of patients with Friedreich's ataxia. Eur. J. Clin. Invest., 31, 1007–11CrossRefGoogle ScholarPubMed
Pook, M. A., Al-Mahdawi, S., Carroll, C. J.et al. (2001). Rescue of the Friedreich's ataxia knockout mouse by human YAC transgenesis. Neurogenetics, 3, 185–93Google ScholarPubMed
Priller, J., Scherzer, C. R., Faber, P. W., MacDonald, M. E. & Young, A. B. (1997). Frataxin gene of Friedreich's ataxia is targeted to mitochondria. Ann. Neurol., 42, 265–9CrossRefGoogle Scholar
Puccio, H., Simon, D., Cossee, M.et al. (2001). Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe–S enzyme deficiency followed by intramitochondrial iron deposits. Nat. Genet., 27, 181–6CrossRefGoogle ScholarPubMed
Radisky, D. C., Babcock, M. C. & Kaplan, J. (1999). The yeast frataxin homologue mediates mitochondrial iron efflux. Evidence for a mitochondrial iron cycle. J. Biol. Chem., 274, 4497–9CrossRefGoogle ScholarPubMed
Ragno, M., Michele, G., Cavalcanti, F.et al. (1997). Broadened Friedreich's ataxia phenotype after gene cloning. Minimal GAA expansion causes late-onset spastic ataxia. Neurology, 49, 1617–20CrossRefGoogle ScholarPubMed
Refsum, S. (1946). Heredopathia atactica polyneuritiformis. A familial syndrome not hitherto described. A contribution to the clinical study of the hereditary disorders of the nervous system. Acta Psychiatr. Scand., Suppl 38Google Scholar
Richter, A., Rioux, J. D., Bouchard, J. P.et al. (1999). Location score and haplotype analyses of the locus for autosomal recessive spastic ataxia of Charlevoix-Saguenay, in chromosome region 13q11. Am. J. Hum. Genet., 64, 768–75CrossRefGoogle ScholarPubMed
Riva, A. & Bradac, G. B. (1995). Primary cerebellar and spino-cerebellar ataxia: an MRI study on 63 cases. J. Neuroradiol., 22, 71–6Google ScholarPubMed
Rotig, A., Lonlay, P., Chretien, D.et al. (1997). Aconitase and mitochondrial iron–sulphur protein deficiency in Friedreich ataxia. Nat. Genet., 17, 215–17CrossRefGoogle ScholarPubMed
Rustin, P., Munnich, A. & Rotig, A. (1999a). Quinone analogs prevent enzymes targeted in Friedreich ataxia from iron- induced injury in vitro. Biofactors, 9, 247–51CrossRefGoogle Scholar
Rustin, P., Kleist-Retzow, J. C., Chantrel-Groussard, K., Sidi, D., Munnich, A. & Rotig, A. (1999b). Effect of idebenone on cardiomyopathy in Friedreich's ataxia: a preliminary study. Lancet, 354, 477–9CrossRefGoogle Scholar
Rustin, P., Rotig, A., Munnich, A. & Sidi, D. (2002). Heart hypertrophy and function are improved by idebenone in Friedreich's ataxia. Free Radic. Res., 36, 467–9CrossRefGoogle ScholarPubMed
Said, G., Marion, M., Selva, J. & Jamet, C. (1986). Hypotrophic and dying-back nerve fibers in Friedreich's ataxia. Neurology, 36, 1292CrossRefGoogle ScholarPubMed
Sakamoto, N., Chastain, P. D., Parniewski, P.et al. (1999). Sticky DNA: self-association properties of long GAA.TTC repeats in R. R. Y triplex structures from Friedreich's ataxia. Mol. Cell., 3, 465–75CrossRefGoogle Scholar
Sakamoto, N., Ohshima, K., Montermini, L., Pandolfo, M. & Wells, R. D. (2001). Sticky DNA, a self-associated complex formed at long GAA*TTC repeats in intron 1 of the frataxin gene, inhibits transcription. J. Biol. Chem., 276, 27171–7CrossRefGoogle ScholarPubMed
Sato, Y., Hagiwara, K., Arai, H. & Inoue, K. (1991). Purification and characterization of the alpha-tocopherol transfer protein from rat liver. FEBS Lett., 288, 41–5CrossRefGoogle ScholarPubMed
Schoenle, E. J., Boltshauser, E. J., Baekkeskov, S., Landin Olsson, M., Torresani, T. & Felten, A. (1989). Preclinical and manifest diabetes mellitus in young patients with Friedreich's ataxia: no evidence of immune process behind the islet cell destruction. Diabetologia, 32, 378–81CrossRefGoogle ScholarPubMed
Schols, L., Amoiridis, G., Przuntek, H., Frank, G., Epplen, J. T. & Epplen, C. (1997). Friedreich's ataxia. Revision of the phenotype according to molecular genetics. Brain, 120, 2131–40CrossRefGoogle ScholarPubMed
Schuelke, M., Mayatepek, E., Inter, M.et al. (1999). Treatment of ataxia in isolates' vitamin E deficiency caused by alpha-tocopherol transfer protein deficiency. J. Pediatr., 134, 240–4CrossRefGoogle Scholar
Schulz, J. B., Dehmer, T., Schols, L.et al. (2000). Oxidative stress in patients with Friedreich ataxia. Neurology, 55, 1719–21CrossRefGoogle ScholarPubMed
Sharp, D., Blinderman, L., Combs, K. A.et al. (1993). Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinaemia. Nature, 365, 65–9CrossRefGoogle ScholarPubMed
Shimohata, T., Date, H., Ishiguro, H.et al. (1998). Ataxia with isolated vitamin E deficiency and retinitis pigmentosa. Ann. Neurol., 43, 273CrossRefGoogle ScholarPubMed
Shoulders, C. C., Brett, D. J., Bayliss, J. D.et al. (1993). Abetalipoproteinemia is caused by defects of the gene encoding the 97 kDa subunit of a microsomal triglyceride transfer protein. Hum. Mol. Genet., 2, 2109–16CrossRefGoogle ScholarPubMed
Stumpf, D. A., Sokol, R., Bettis, D.et al. (1987). Friedreich's disease: V. Variant form with vitamin E deficiency and normal fat absorption. Neurology, 37, 68–74CrossRefGoogle ScholarPubMed
Takashima, H., Boerkoel, C. F., John, J.et al. (2002). Mutation of TDP1, encoding a topoisomerase l-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat. Genet., 32, 267–72CrossRefGoogle Scholar
Taylor, A. M., McConville, C. M., Rotman, G., Shiloh, Y. & Byrd, P. J. (1994). A haplotype common to intermediate radiosensitivity variants of ataxia-telangiectasia in the UK. Int. J. Radiat. Biol., 66, S35–41CrossRefGoogle ScholarPubMed
Taylor, A. M., Metcalfe, J. A., Thick, J. & Mak, Y. F. (1996). Leukemia and lymphoma in ataxia telangiectasia. Blood, 87, 423–38Google ScholarPubMed
Traber, M. G., Sokol, R. J., Burton, G. W.et al. (1990). Impaired ability of patients with familial isolated vitamin E deficiency to incorporate alpha-tocopherol into lipoproteins secreted by the liver. J. Clin. Invest., 85, 397–407CrossRefGoogle ScholarPubMed
Traber, M. G., Sokol, R. J., Kohlschutter, A.et al. (1993). Impaired discrimination between stereoisomers of alpha-tocopherol in patients with familial isolated vitamin E deficiency. J. Lipid. Res., 34, 201–10Google ScholarPubMed
Traber, M. G., Ramakrishnan, R. & Kayden, H. J. (1994). Human plasma vitamin E kinetics demonstrate rapid recycling of plasma RRR-alpha-tocopherol. Proc. Natl Acad. Sci., USA, 91, 10005–8CrossRefGoogle ScholarPubMed
Trabert, W., Stober, T., Mielke, U., Heck, F. S. & Schimrigk, K. (1989). [Isolated vitamin E deficiency]. Fortschr. Neurol. Psychiatr., 57, 495–501CrossRefGoogle Scholar
Tranchant, C., Fleury, M., Moreira, M. C., Koenig, M. & Warter, J. M. (2003). Phenotypic variability of aprataxin gene mutations. Neurology, 60, 868–70CrossRefGoogle ScholarPubMed
Uekawa, K., Yuasa, T., Kawasaki, S., Makibuchi, T. & Ideta, T. (1992). [A hereditary ataxia associated with hypoalbuminemia and hyperlipidemia – a variant form of Friedreich's disease of a new clinical entity?]. Rinsho Shinkeigaku, 32, 1067–74Google Scholar
Bogaert, L. & Martin, L. (1974). Optic and cochleovestibular degenerations in the hereditary ataxias. I. Clinico-pathological and genetic aspects. Brain, 97, 15–40CrossRefGoogle ScholarPubMed
Waldvogel, D., Gelderen, P. V. & Hallett, M. (1999). Increased iron in the dentate nucleus of patients with Friedreich's ataxia. Annals in Neurology, 46, 123–53.0.CO;2-H>CrossRefGoogle Scholar
Watanabe, M., Sugai, Y., Concannon, P.et al. (1998). Familial spinocerebellar ataxia with cerebellar atrophy, peripheral neuropathy, and elevated level of serum creatine kinase, gamma-globulin, and alpha-fetoprotein. Ann. Neurol., 44, 265–9CrossRefGoogle ScholarPubMed
Wetterau, J. R., Aggerbeck, L. P., Bouma, M. E.et al. (1992). Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science, 258, 999–1001CrossRefGoogle ScholarPubMed
Wilson, R. B. & Roof, D. M. (1997). Respiratory deficiency due to loss of mitochondrial DNA in yeast lacking the frataxin homologue. Nat. Genet., 16, 352–7CrossRefGoogle ScholarPubMed
Wilson, R. B., Lynch, D. R. & Fischbeck, K. H. (1998). Normal serum iron and ferritin concentrations in patients with Friedreich's ataxia. Ann. Neurol., 44, 132–4CrossRefGoogle ScholarPubMed
Wilson, R. B., Lynch, D. R., Farmer, J. M., Brooks, D. G. & Fischbeck, K. H. (2000). Increased serum transferrin receptor concentrations in Friedreich ataxia. Ann. Neurol., 47, 659–613.0.CO;2-T>CrossRefGoogle ScholarPubMed
Yokota, T., Wada, Y., Furukawa, T., Tsukagoshi, H., Uchihara, T. & Watabiki, S. (1987). Adult-onset spinocerebellar syndrome with idiopathic vitamin E deficiency. Ann. Neurol., 22, 84–7CrossRefGoogle ScholarPubMed
Yokota, T., Shiojiri, T., Gotoda, T.et al. (1997). Friedreich-like ataxia with retinitis pigmentosa caused by the His101Gln mutation of the alpha-tocopherol transfer protein gene. Ann. Neurol., 41, 826–32CrossRefGoogle ScholarPubMed
Zouari, M., Feki, M., Ben Hamida, C.et al. (1998). Electrophysiology and nerve biopsy: comparative study in Friedreich's ataxia and Friedreich's ataxia phenotype with vitamin E deficiency. Neuromuscul. Disord., 8, 416–25CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Friedreich's ataxia and other autosomal recessive ataxias
    • By Hélène Puccio, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/Université Louis Pasteur, Hôpitaux Universitaires de Strasbourg, France, Michel Koenig, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/Université Louis Pasteur, Hôpitaux Universitaires de Strasbourg, France
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.049
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Friedreich's ataxia and other autosomal recessive ataxias
    • By Hélène Puccio, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/Université Louis Pasteur, Hôpitaux Universitaires de Strasbourg, France, Michel Koenig, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/Université Louis Pasteur, Hôpitaux Universitaires de Strasbourg, France
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.049
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Friedreich's ataxia and other autosomal recessive ataxias
    • By Hélène Puccio, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/Université Louis Pasteur, Hôpitaux Universitaires de Strasbourg, France, Michel Koenig, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/Université Louis Pasteur, Hôpitaux Universitaires de Strasbourg, France
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.049
Available formats
×