Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-15T16:30:27.830Z Has data issue: false hasContentIssue false

12 - A look at the hidden side of situated cognition: a robotic study of brain-oscillation-based dynamics of instantaneous, episodic, and conscious memories

from Part IV - Philosophical and theoretical considerations

Published online by Cambridge University Press:  05 February 2012

Jeffrey L. Krichmar
Affiliation:
University of California, Irvine
Hiroaki Wagatsuma
Affiliation:
Kyushu Institute of Technology (KYUTECH), Japan
Get access

Summary

Introduction

One of the most amazing aspects of brain function is that free will and consciousness emerges from the simple elemental functions of neurons. How do a hundred billion neurons produce global functions, such as intention, mind, and consciousness? As gathering a billion people is not equal to making a civilized society, the brain is not merely a combination of neurons. There would be rules of relation and principles of action. I have been interested for many years in the neurodynamics of situated cognition and contextual decision making, particularly focusing on synchronization mechanisms in the brain. Neural synchronization is well known in spinal motor coordination (e.g. central pattern generators, CPG), circadian rhythms and EEG recordings of human brain activities during mental tasks. Synchronized population activity plays functional roles in memory formation and context-dependent utilization of personal experiences in animal models. However, those experiments and models have dealt with a specific brain circuit in a fixed condition, or at least less attention has been given to an embodied view, where the brain, body, and environment comprise a closed whole loop. The embodied view is the natural setting for a brain functioning in the real world. I have recently become interested in building an online and on-demand experimental platform to link the robotic body with its neurodynamics. This platform is implemented in a remote computer and gives us the advantage of studying brain functions in a dynamic environment, and to offer qualitative analyses of behavioral time, in contradistinction to neuronal time, or mental time. This chapter relates past work to present work in an informal way that might be uncommon in journal papers. By taking advantage of this opportunity, I will use informal speech and explanations, as well as personal anecdotes to guide the reader to understand important trends and perspectives in this topic. Section 12.1 gives an introduction to artificial systems that makes a commitment to biology, and argues a point of biologically inspired robotics in the viewpoint of being life. Section 12.2 overviews the multiple memory systems of the brain in terms of conscious awareness. Section 12.3 describes robotic methodologies by using neural dynamics of oscillatory components to enable the system to provide online decision making in cooperation with involuntary motor controls, and discusses necessities for future work. Section 12.4 summarizes key concepts and future perspectives.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amari, S. 1977 Dynamics of pattern formation in lateral-inhibition type neural fieldsBiological Cybernetics 27 77CrossRefGoogle Scholar
Amit, D. J.Tsodyks, M. V. 1992 Effective neurons and attractor neural networks in cortical environmentNetwork: Computation in Neural Systems 3 121CrossRefGoogle Scholar
August, D. A.Levy, W. B. 1996 A simple spike train decoder inspired by the sampling theoremNeural Computation 8 67CrossRefGoogle ScholarPubMed
Baker, S. N. 2007 Oscillatory interactions between sensorimotor cortex and the peripheryCurrent Opinion in Neurobiology 17 649CrossRefGoogle Scholar
Barnes, C. A.Suster, M. S.Shen, J.McNaughton, B. L. 1997 Multistability of cognitive maps in the hippocampus of old ratsNature 388 272CrossRefGoogle ScholarPubMed
Blum, K. I.Abbott, L. F. 1996 A model of spatial map formation in the hippocampus of the ratNeural Computing 8 85CrossRefGoogle ScholarPubMed
Brooks, R. A. 1986 A robust layered control system for a mobile robotIEEE Journal of Robotics and Automation 2 14CrossRefGoogle Scholar
Brooks, R. A. 1990 Elephants don’t play chessRobotics and Autonomous Systems 6 3CrossRefGoogle Scholar
Brooks, R. A.Connell, J. 1986 Proceedings of SPIE’s Cambridge Symposium on Optical and Optoelectronic EngineeringCambridge, MAGoogle Scholar
Brown, C.Laland, K.Krause, J. 2006 Fish Cognition and BehaviorOxford, UKBlackwell PublishingCrossRefGoogle Scholar
Burgess, N.Recce, M.O’Keefe, J. 1994 A model of hippocampal functionNeural Networks 7 1065CrossRefGoogle Scholar
Burgess, N.Donnett, J. G.Jeffery, K. J.O’Keefe, J. 1997 Robotic and neuronal simulation of the hippocampus and rat navigationPhilosophical Transactions of the Royal Society of London B Biological Sciences 352 1535CrossRefGoogle ScholarPubMed
Buzsaki, G. 2002 Theta oscillations in the hippocampusNeuron 33 325Google ScholarPubMed
Buzsaki, G. 2006 Rhythms of the BrainOxford, UKOxford University PressCrossRefGoogle Scholar
Conklin, J.Eliasmith, C. 2005 A controlled attractor network model of path integration in the ratJournal of Computational Neuroscience 18 183CrossRefGoogle Scholar
Cox, B. R.Krichmar, J. L. 2009 Neuromodulation as a robot controller: a brain inspired design strategy for controlling autonomous robotsIEEE Robotics & Automation Magazine 16 72CrossRefGoogle Scholar
Crick, F.Koch, C. 2003 A framework for consciousnessNature Neuroscience 6 119CrossRefGoogle ScholarPubMed
Damasio, A. 1999 The Feeling of What Happens: Body, Emotion and the Making of ConsciousnessLondonHeinemannGoogle Scholar
Dennett, D. 1984 The Philosophy of Artificial IntelligenceLondonOxford University PressGoogle Scholar
Diba, K.Buzsaki, G. 2008 Hippocampal network dynamics constrain the time lag between pyramidal cells across modified environmentsJournal of Neuroscience 28 13 44856CrossRefGoogle ScholarPubMed
Dragoi, G.Buzsaki, G. 2006 Temporal encoding of place sequences by hippocampal cell assembliesNeuron 50 145CrossRefGoogle ScholarPubMed
Dusek, J. A.Eichenbaum, H. 1997 The hippocampus and memory for orderly stimulus relationsProceedings of the National Academy of Sciences of the USA 94 7109CrossRefGoogle ScholarPubMed
Eccles, J. C. 1989 Evolution of the Brain: Creation of the SelfLondonRoutledge.Google Scholar
Edelman, G. M. 2007 Learning in and from brain-based devicesScience 318 1103CrossRefGoogle ScholarPubMed
Eichenbaum, H. 2001 The hippocampus and declarative memory: cognitive mechanisms and neural codesBehavior in Brain Research 127 199CrossRefGoogle Scholar
Eichenbaum, H. 2003 The hippocampus, episodic memory, declarative memory, spatial memory… where does it all come together?International Congress Series 1250 235CrossRefGoogle Scholar
Eichenbaum, H.Dudchenko, P.Wood, E.Shapiro, M.Tanila, H. 1999 The hippocampus, memory, and place cells: is it spatial memory or a memory space?Neuron 23 209CrossRefGoogle ScholarPubMed
Engel, A. K.Fries, P.Singer, W. 2001 Dynamic predictions: oscillations and synchrony in top-down processingNature Reviews Neuroscience 2 704CrossRefGoogle ScholarPubMed
Ferbinteanu, J.Shapiro, M. L. 2003 Prospective and retrospective memory coding in the hippocampusNeuron 40 1227CrossRefGoogle ScholarPubMed
Fleischer, J. G.Gally, J. A.Edelman, G. M.Krichmar, J. L. 2007 Retrospective and prospective responses arising in a modeled hippocampus during maze navigation by a brain-based deviceProceedings of the National Academy of Sciences of the USA 104 3556CrossRefGoogle Scholar
Floresco, S. B.Grace, A. A. 2003 Gating of hippocampal-evoked activity in prefrontal cortical neurons by inputs from the mediodorsal thalamus and ventral tegmental areaJournal of Neuroscience 23 3930CrossRefGoogle ScholarPubMed
Frank, L.M.Brown, E.N.Wilson, M.A. 2000 Trajectory encoding in the hippocampus and entorhinal cortexNeuron 27 169CrossRefGoogle ScholarPubMed
Fuster, J. 2001 The prefrontal cortex – an update: time is of the essenceNeuron 30 319CrossRefGoogle Scholar
Fuster, J. 2002 Frontal lobe and cognitive developmentJournal of Neurocytology 31 373CrossRefGoogle ScholarPubMed
Fyhn, M.Hafting, T.Treves, A.Moser, M. B.Moser, E. I. 2007 Hippocampal remapping and grid realignment in entorhinal cortexNature 446 190CrossRefGoogle ScholarPubMed
Gibson, J. J. 1979 The Ecological Approach to Visual PerceptionBostonHoughton MifflinGoogle Scholar
Golubitsky, M.Stewart, I.Buono, P. L.Collins, J. J. 1999 Symmetry in locomotor central pattern generators and animal gaitsNature 401 693CrossRefGoogle ScholarPubMed
Goto, Y.Grace, A. A. 2005 Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behaviorNature Neuroscience 8 805CrossRefGoogle ScholarPubMed
Ijspeert, A. J.Crespi, A.Ryczko, D.Cabelguen, J. M. 2007 From swimming to walking with a salamander robot driven by a spinal cord modelScience 315 1416CrossRefGoogle ScholarPubMed
Ikegami, T.Suzuki, K. 2008 From a homeostatic to a homeodynamic selfBioSystems 91 388CrossRefGoogle ScholarPubMed
Jensen, O.Lisman, J. E. 1996 Theta/gamma networks with slow NMDA channels learn sequences and encode episodic memory: role of NMDA channels in recallLearning and Memory 3 264CrossRefGoogle ScholarPubMed
Jensen, O.Lisman, J. E. 2000 Position reconstruction from an ensemble of hippocampal place cells: contribution of theta phase codingJournal of Neurophysiology2602CrossRefGoogle ScholarPubMed
Johnson, A.Redish, A. D. 2007 Neural ensembles in CA3 transiently encode paths forward of the animal at a decision pointJournal of Neuroscience 27 12176CrossRefGoogle Scholar
Johnson, A.van der Meer, M. A.Redish, A. D. 2007 Integrating hippocampus and striatum in decision-makingCurrent Opinion in Neurobiology 17 692CrossRefGoogle ScholarPubMed
Jones, M. A.Wilson, M. A. 2005 Phase precession of medial prefrontal cortical activity relative to the hippocampal theta rhythmHippocampus 15 867CrossRefGoogle ScholarPubMed
Jones, M. A.Wilson, M. A. 2005 Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory taskPLoS Biol 3 402CrossRefGoogle Scholar
Kli, S.Dayan, P. 2000 The involvement of recurrent connections in area CA3 in establishing the properties of place fields: a modelJournal of Neuroscience 20 7463CrossRefGoogle Scholar
Kandel, E. R.Schwartz, J. H.Jessell, T. M. 2000 Principles of Neural ScienceLondonMcGraw-HillGoogle Scholar
Kitano, H.Oda, K. 2006 Robustness trade-offs and host-microbial symbiosis in the immune systemMolecular Systems Biology 2CrossRefGoogle ScholarPubMed
Kobayashi, T.Tran, A. H.Nishijo, H.Ono, T.Matsumoto, G. 2003 Contribution of hippocampal place cell activity to learning and formation of goal-directed navigation in ratsNeuroscience 117 1025CrossRefGoogle Scholar
Krichmar, J. L.Edelman, G. M. 2006 Kovacs, Marshall, J. A. R.Adaptation in Artificial and Biological SystemsBristol, UKSociety for the Study of Artificial Intelligence and the Simulation of BehaviourGoogle Scholar
Krichmar, J. L.Nitz, D. A.Gally, J.A.Edelman, G. M. 2005 Characterizing functional hippocampal pathways in a brain-based device as it solves a spatial memory taskProceedings of the National Academy of Sciences of the USA 102 2111CrossRefGoogle Scholar
Kuramoto, Y. 1984 Chemical Oscillations, Waves, and TurbulenceBerlinSpringer-VerlagCrossRefGoogle Scholar
LeDoux, J. 1996 The Emotional Brain: The Mysterious Underpinnings of Emotional LifeNew YorkSimon & SchusterGoogle Scholar
Lee, A. K.Wilson, M. A. 2002 Memory of sequential experience in the hippocampus during slow wave sleepNeuron 36 1183CrossRefGoogle ScholarPubMed
Libet, B. 2004 Mind Time: The Temporal Factor in ConsciousnessCambridge, MAHarvard University PressGoogle Scholar
Libet, B.Gleason, C. A.Wright, E. W.Pearl, D. K. 1983 Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential): the unconscious initiation of a freely voluntary actBrain 106 623CrossRefGoogle Scholar
Lisman, J. 2005 The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding schemeHippocampus 15 913CrossRefGoogle Scholar
Lisman, J.Redish, A. D. 2009 Prediction, sequences and the hippocampusPhilosophical Transactions of the Royal Society of London B Biological Sciences 364 1193CrossRefGoogle ScholarPubMed
Lisman, J. E.Idiart, M. A. 1995 Storage of 7 ± 2 short-term memories in oscillatory subcyclesScience 267 1512CrossRefGoogle Scholar
Llins, R. R.Roy, S. 2009 Philosophical Transactions of the Royal Society of London B Biological Sciences
McCarthy, J.Hayes, P. J. 1969 Some philosophical problems from the standpoint of artificial intelligenceMachine Intelligence 4 463Google Scholar
McKinstry, J. L.Edelman, G. M.Krichmar, J. L. 2006 A cerebellar model for predictive motor control tested in a brain-based deviceProceedings of the National Academy of Sciences of the USA 103 3387CrossRefGoogle Scholar
Mizuseki, K.Sirota, A.Pastalkova, E.Buzsaki, G. 2009 Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loopNeuron 64 267CrossRefGoogle ScholarPubMed
Muller, R. U.Kubie, J. L.Saypoff, R. 1991 The hippocampus as a cognitive graph (abridged version)Hippocampus 1 243CrossRefGoogle Scholar
Muller, R. U.Stead, M.Pach, J. 1996 The hippocampus as a cognitive graphJournal of General Physiology 107 663CrossRefGoogle ScholarPubMed
Newman, J.Grace, A. A. 1999 Binding across time: the selective gating of frontal and hippocampal systems modulating working memory and attentional statesConsciousness and Cognition 8 196CrossRefGoogle ScholarPubMed
O’Keefe, J.Dostrovsky, J. 1971 The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving ratBrain Research 34 171CrossRefGoogle Scholar
O’Keefe, J.Nadel, L. 1978 The Hippocampus as a Cognitive MapNew York:ClarendonGoogle Scholar
Palva, J. M.Monto, S.Kulashekhar, S.Palva, S. 2010 Neuronal synchrony reveals working memory networks and predicts individual memory capacityProceedings of the National Academy of Sciences of the USA 107 7580CrossRefGoogle ScholarPubMed
Pennisi, E. 2007 Evolution: robot suggests how the first land animals got walkingScience 315 1352CrossRefGoogle ScholarPubMed
Piaget, J. 1928 Judgement and Reasoning in the ChildNew YorkHarcourt, Brace and WorldCrossRefGoogle Scholar
Pinker, S. 2002 The Blank Slate: The Modern Denial of Human NatureNew YorkViking PenguinGoogle Scholar
Prescott, T. J.Montes Gonzlez, F. M.Gurney, K.Humphries, M. D.Redgrave, P. 2006 A robot model of the basal ganglia: behavior and intrinsic processingNeural Networks 19 31CrossRefGoogle ScholarPubMed
Redish, A. D.Touretzky, D. S. 1998 The role of the hippocampus in solving the Morris water mazeNeural Computation 10 73CrossRefGoogle ScholarPubMed
Rodriguez, E.George, N.Lachaux, J. P. 1999 Perception’s shadow: long-distance synchronization of human brain activityNature 397 430CrossRefGoogle ScholarPubMed
Samsonovich, A.McNaughton, B. L. 1997 Path integration and cognitive mapping in a continuous attractor neural network modelJournal of Neuroscience 17 5900CrossRefGoogle Scholar
Seth, A. K.Izhikevich, E.Reeke, G. N.Edelman, G. M. 2006 Theories and measures of consciousness: an extended frameworkProceedings of the National Academy of Sciences of the USA 103 10 79910 804CrossRefGoogle ScholarPubMed
Shirvalkar, P. R.Rapp, P. R.Shapiro, M. L. 2010 Bidirectional changes to hippocampal theta-gamma comodulation predict memory for recent spatial episodesProceedings of the National Academy of Sciences of the USA 107 7054CrossRefGoogle ScholarPubMed
Skaggs, W. E.McNaughton, B. L.Wilson, M. A.Barnes, C. A. 1996 Theta phase precession in hippocampal neuronal populations and the compression of temporal sequencesHippocampus 6 1493.0.CO;2-K>CrossRefGoogle Scholar
Sloman, A. 2009 Sendhoff, Koerner, Sporns, Ritter, Doya, Creating Brain-like IntelligenceBerlinSpringer-VerlagGoogle Scholar
Smith, D. M.Mizumori, S. J. Y. 2006 Hippocampal place cells, context and episodic memoryHippocampus 16 716CrossRefGoogle ScholarPubMed
Squire, L. R. 1987 Memory and BrainNew YorkOxford University PressGoogle Scholar
Stringer, S. M.Rolls, E. T.Trappenberg, T. P. 2004 Self-organising continuous attractor networks with multiple activity packets, and the representation of spaceNeural Networks 17 5Google ScholarPubMed
Taga, G. 1998 A model of the neuro-musculo-skeletal-system for anticipatory adjustment of human locomotion during obstacle avoidanceBiological Cybernetics 78 9CrossRefGoogle ScholarPubMed
Taga, G. 2006 Kimura, Tsuchiya, Ishiguro, A.,Witte,
Tort, A. B. L.Komorowski, R. W.Manns, J. R.Kopell, N. J.Eichenbaum, H. 2009 Theta-gamma coupling increases during the learning of item-context associationsProceedings of the National Academy of Sciences of the USA 106 20 94220 947CrossRefGoogle ScholarPubMed
Trullier, O.Meyer, J. A. 2000 Animat navigation using a cognitive graphBiological Cybernetics 83 271CrossRefGoogle ScholarPubMed
Tsodyks, M. 1999 Attractor neural network models of spatial maps in hippocampusHippocampus 9 4813.0.CO;2-S>CrossRefGoogle ScholarPubMed
Tulving, E. 1972 Organization of MemoryNew YorkAcademic PressGoogle Scholar
Verschure, P. F.Voegtlin, T.Douglas, R. J. 2003 Environmentally mediated synergy between perception and behaviour in mobile robotsNature 425 620CrossRefGoogle Scholar
Wagatsuma, H. 2009 Hybrid design principles and time constants in the construction of brain-based robotics: a real-time simulator of oscillatory neural networks interacting with the real environment via robotic devicesSpringer Lecture Notes in Computer Science 5506 119CrossRefGoogle Scholar
Wagatsuma, H.Yamaguchi, Y 2004 Cognitive map formation through sequence encoding by theta phase precessionNeural Computation 16 2665CrossRefGoogle ScholarPubMed
Wagatsuma, H.Yamaguchi, Y. 2007 Neural dynamics of the cognitive map in the hippocampusCognitive Neurodynamics 1 119CrossRefGoogle ScholarPubMed
Wagatsuma, H.Yamaguchi, Y. 2008 Context-dependent adaptive behavior generated in the theta phase coding networkSpringer Lecture Notes in Computer Science 4985 177CrossRefGoogle Scholar
Wood, E. R.Dudchenko, P. A.Robitsek, R. J.Eichenbaum, H. 2000 Hippocampal neurons encode information about different types of memory episodes occurring in the same locationNeuron 27 623Google ScholarPubMed
Wu, S.Amari, S. 2005 Computing with continuous attractors: stability and online aspectsNeural Computation 17 2215CrossRefGoogle ScholarPubMed
Yamaguchi, Y. 2003 A theory of hippocampal memory based on theta phase precessionBiological Cybernetics 89 1Google Scholar
Yuste, R.MacLean, R.Smith, J.Lansner, A. 2005 The cortex as a central pattern generatorNature Reviews Neuroscience 6 477CrossRefGoogle ScholarPubMed
Ziemke, T. 2008 On the role of emotion in biological and robotic autonomyBioSystems 91 401CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×