Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-16T06:45:41.707Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 July 2017

Merim Bilalić
Affiliation:
Alpen-Adria-Universität Klagenfurt, Austria
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernethy, B. (1991). Visual search strategies and decision-making in sport. International Journal of Sport Psychology, 22(3–4), 189210.Google Scholar
Abernethy, B., Farrow, D., & Berry, J. (2003). Constraints and issues in the development of a general theory of expert perceptual-motor performance: a critique of the deliberate practice framework. In Starkes, J. L. (Ed.), Expert Performance in Sports: Advances in Research on Sport Expertise (pp. 349369). Champaign, IL: Human Kinetics.Google Scholar
Abernethy, B., Gill, D. P., Parks, S. L., & Packer, S. T. (2001). Expertise and the perception of kinematic and situational probability information. Perception, 30(2), 233252.CrossRefGoogle ScholarPubMed
Abernethy, B., Neal, R. J., & Koning, P. (1994). Visual–perceptual and cognitive differences between expert, intermediate, and novice snooker players. Applied Cognitive Psychology, 8(3), 185211.CrossRefGoogle Scholar
Abernethy, B., & Russell, D. G. (1987). The relationship between expertise and visual search strategy in a racquet sport. Human Movement Science, 6(4), 283319.Google Scholar
Abreu, A. M., Macaluso, E., Azevedo, R. T., Cesari, P., Urgesi, C., & Aglioti, S. M. (2012). Action anticipation beyond the action observation network: a functional magnetic resonance imaging study in expert basketball players. European Journal of Neuroscience, 35(10), 16461654.Google Scholar
Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 11091116.CrossRefGoogle ScholarPubMed
Amedi, A., Jacobson, G., Hendler, T., Malach, R., & Zohary, E. (2002). Convergence of visual and tactile shape processing in the human lateral occipital complex. Cerebral Cortex, 12(11), 12021212.CrossRefGoogle ScholarPubMed
Amedi, A., Malach, R., Hendler, T., Peled, S., & Zohary, E. (2001). Visuo-haptic object-related activation in the ventral visual pathway. Nature Neuroscience, 4(3), 324330.CrossRefGoogle ScholarPubMed
Amunts, K., Schlaug, G., Jäncke, L., Steinmetz, H., Schleicher, A., Dabringhaus, A., & Zilles, K. (1997). Motor cortex and hand motor skills: structural compliance in the human brain. Human Brain Mapping, 5(3), 206215.Google Scholar
Baker, J., & Farrow, D. (2015). Routledge Handbook of Sport Expertise. New York: Routledge.CrossRefGoogle Scholar
Balser, N., Lorey, B., Pilgramm, S., Naumann, T., Kindermann, S., Stark, R., Zentgraf, K., Williams, M., & Munzert, J. (2014a). The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves. Frontiers in Human Neuroscience, 8.Google Scholar
Balser, N., Lorey, B., Pilgramm, S., Stark, R., Bischoff, M., Zentgraf, K., Williams, A. M., & Munzert, J. (2014b). Prediction of human actions: expertise and task-related effects on neural activation of the action observation network. Human Brain Mapping, 35(8), 40164034.Google Scholar
Bangert, M., & Schlaug, G. (2006). Specialization of the specialized in features of external human brain morphology. European Journal of Neuroscience, 24(6), 18321834.Google Scholar
Bartlett, J., Boggan, A. L., & Krawczyk, D. C. (2013). Expertise and processing distorted structure in chess. Frontiers in Human Neuroscience, 3(7), 825.Google Scholar
Bauer, C., Yazzolino, L., Hirsch, G., Cattaneo, Z., Vecchi, T., & Merabet, L. B. (2015). Neural correlates associated with superior tactile symmetry perception in the early blind. Cortex, 63, 104117.CrossRefGoogle ScholarPubMed
Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullén, F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8(9), 11481150.CrossRefGoogle ScholarPubMed
Bennett, C. M., & Baird, A. A. (2006). Anatomical changes in the emerging adult brain: a voxel-based morphometry study. Human Brain Mapping, 27(9), 766777.CrossRefGoogle Scholar
Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8(6), 551565.CrossRefGoogle ScholarPubMed
Berbaum, K. S., FranklinJr, E. A., Caldwell, R. T., & Schartz, K. M. (2010). Satisfaction of search in traditional radiographic imaging. In Samei, E. & Krupinski, E. (Eds.), The Handbook of Medical Image Perception and Techniques (pp. 107138). Cambridge University Press.Google Scholar
Bermudez, P., Lerch, J. P., Evans, A. C., & Zatorre, R. J. (2009). Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cerebral Cortex, 19(7), 15831596.CrossRefGoogle ScholarPubMed
Bermudez, P., & Zatorre, R. J. (2005). Conditional associative memory for musical stimuli in nonmusicians: implications for absolute pitch. Journal of Neuroscience, 25(34), 77187723.Google Scholar
Bilalić, M. (2016). Revisiting the role of the fusiform face area (FFA) in expertise. Journal of Cognitive Neuroscience, 28, 13451357.CrossRefGoogle ScholarPubMed
Bilalić, M., Grottenthaler, T., Nägele, T., & Lindig, T. (2015, September). In a split second – neural basis of radiological expertise, Paper presented at the biannual ESCOP meeting, Paphos, Zypern.Google Scholar
Bilalić, M., Grottenthaler, T., Nägele, T., & Lindig, T. (2016). The faces in radiological images: fusiform face area supports radiological expertise. Cerebral Cortex, 26(3), 10041014.CrossRefGoogle ScholarPubMed
Bilalić, M., Kiesel, A., Pohl, C., Erb, M., & Grodd, W. (2011). It takes two – skilled recognition of objects engages lateral areas in both hemispheres. PLoS One, 6(1), e16202.CrossRefGoogle ScholarPubMed
Bilalić, M., Langner, R., Erb, M., & Grodd, W. (2010). Mechanisms and neural basis of object and pattern recognition: a study with chess experts. Journal of Experimental Psychology: General, 139(4), 728742.Google Scholar
Bilalić, M., Langner, R., Ulrich, R., & Grodd, W. (2011). Many faces of expertise: fusiform face area in chess experts and novices. Journal of Neuroscience, 31(28), 1020610214.Google Scholar
Bilalić, M., & McLeod, P. (2006). How intellectual is chess? – a reply to Howard. Journal of Biosocial Science, 38(3), 419421.CrossRefGoogle Scholar
Bilalić, M., & McLeod, P. (2014). Why good thoughts block better ones. Scientific American, 310(3), 7479.CrossRefGoogle ScholarPubMed
Bilalić, M., McLeod, P., & Gobet, F. (2007). Does chess need intelligence? – a study with young chess players. Intelligence, 35(5), 457470.CrossRefGoogle Scholar
Bilalić, M., McLeod, P., & Gobet, F. (2008a). Expert and “novice” problem solving strategies in chess: sixty years of citing de Groot (1946). Thinking & Reasoning, 14(4), 395408.CrossRefGoogle Scholar
Bilalić, M., McLeod, P., & Gobet, F. (2008b). Inflexibility of experts – reality or myth? Quantifying the Einstellung effect in chess masters. Cognitive Psychology, 56(2), 73102.Google Scholar
Bilalić, M., McLeod, P., & Gobet, F. (2008c). Why good thoughts block better ones: the mechanism of the pernicious Einstellung (set) effect. Cognition, 108(3), 652661.CrossRefGoogle ScholarPubMed
Bilalić, M., McLeod, P., & Gobet, F. (2010). The mechanism of the Einstellung (set) effect: a pervasive source of cognitive bias. Current Directions in Psychological Science, 19(2), 111115.CrossRefGoogle Scholar
Bilalić, M., Turella, L., Campitelli, G., Erb, M., & Grodd, W. (2012). Expertise modulates the neural basis of context dependent recognition of objects and their relations. Human Brain Mapping, 33(11), 27282740.Google Scholar
Binet, A. (1894). Psychologie des grands calculateurs et joiers d’échecs. Paris: Hachette.Google Scholar
Bishop, D. T., Wright, M. J., Jackson, R. C., & Abernethy, B. (2013). Neural bases for anticipation skill in soccer: an FMRI study. Journal of Sport & Exercise Psychology, 35(1), 98109.CrossRefGoogle ScholarPubMed
Bloom, B. (1985). Developing Talent in Young People. New York: Ballantine Books.Google Scholar
Bock, G. R., & Ackrill, K. (Eds.) (1993). Ciba Foundation Symposium 178 – The Origins and Development of High Ability. Chichester: Wiley.Google Scholar
Boggan, A. L., Bartlett, J. C., & Krawczyk, D. C. (2012). Chess masters show a hallmark of face processing with chess. Journal of Experimental Psychology: General, 141(1), 3742.CrossRefGoogle ScholarPubMed
Boroojerdi, B., Bushara, K. O., Corwell, B., Immisch, I., Battaglia, F., Muellbacher, W., & Cohen, L. G. (2000). Enhanced excitability of the human visual cortex induced by short-term light deprivation. Cerebral Cortex, 10(5), 529534.CrossRefGoogle ScholarPubMed
Bradman, D. (1958). The Art of Cricket. Sydney: ETT Imprint.Google Scholar
Bryan, W. L., & Harter, N. (1897). Studies in the physiology and psychology of the telegraphic language. Psychological Review, 4(1), 2753.CrossRefGoogle Scholar
Bukach, C. M., Gauthier, I., & Tarr, M. J. (2006). Beyond faces and modularity: the power of an expertise framework. Trends in Cognitive Sciences, 10(4), 159166.Google Scholar
Buschhüter, D., Smitka, M., Puschmann, S., Gerber, J. C., Witt, M., Abolmaali, N. D., & Hummel, T. (2008). Correlation between olfactory bulb volume and olfactory function. NeuroImage, 42(2), 498502.CrossRefGoogle ScholarPubMed
Busey, T. A., & Vanderkolk, J. R. (2005). Behavioral and electrophysiological evidence for configural processing in fingerprint experts. Vision Research, 45(4), 431448.CrossRefGoogle ScholarPubMed
Calvo-Merino, B. (2004). Action observation and acquired motor skills: an fMRI study with expert dancers. Cerebral Cortex, 15(8), 12431249.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: an fMRI study with expert dancers. Cerebral Cortex, 15(8), 12431249.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16(19), 19051910.Google Scholar
Campitelli, G., Gobet, F., & Bilalić, M. (2014). Cognitive processes and development of chess genius: an integrative approach. In Simonton, D. K. (Ed.), The Wiley Handbook of Genius (pp. 350374). Chichester: Wiley.CrossRefGoogle Scholar
Campitelli, G., Gobet, F., Head, K., Buckley, M., & Parker, A. (2007). Brain localization of memory chunks in chess players. International Journal of Neuroscience, 117(12), 16411659.CrossRefGoogle Scholar
Campitelli, G., Gobet, F., & Parker, A. (2005). Structure and stimulus familiarity: a study of memory in chess-players with functional magnetic resonance imaging. Spanish Journal of Psychology, 8(2), 238245.CrossRefGoogle ScholarPubMed
Campitelli, G., & Speelman, C. (2013). Expertise paradigms for investigating the neural substrates of stable memories. Frontiers in Human Neuroscience, 7, 740.CrossRefGoogle ScholarPubMed
Cannonieri, G. C., Bonilha, L., Fernandes, P. T., Cendes, F., & Li, L. M. (2007). Practice and perfect: length of training and structural brain changes in experienced typists. NeuroReport, 18(10), 10631066.Google Scholar
Carmody, D. P., Nodine, C. F., & Kundel, H. L. (1980). Global and segmented search for lung nodules of different edge gradients. Investigative Radiology, 15(3), 224.Google Scholar
Castriota-Scanderbeg, A., Hagberg, G. E., Cerasa, A., Committeri, G., Galati, G., Patria, F., Pitzalis, S., et al. (2005). The appreciation of wine by sommeliers: a functional magnetic resonance study of sensory integration. NeuroImage, 25(2), 570578.Google Scholar
Cattaneo, Z., Bona, S., Bauer, C., Silvanto, J., Herbert, A. M., Vecchi, T., & Merabet, L. B. (2014). Symmetry detection in visual impairment: behavioral evidence and neural correlates. Symmetry, 6(2), 427443.CrossRefGoogle Scholar
Chabris, C. F., & Hearst, E. S. (2003). Visualization, pattern recognition, and forward search: effects of playing speed and sight of the position on grandmaster chess errors. Cognitive Science, 27(4), 637648.Google Scholar
Charness, N., Tuffiash, M., Krampe, R., Reingold, E., & Vasyukova, E. (2005). The role of deliberate practice in chess expertise. Applied Cognitive Psychology, 19(2), 151165.CrossRefGoogle Scholar
Chase, W. G. (1983). Spatial representations of taxi drivers. In Rogers, D., &, Sloboda, J. A. (Eds.), The Acquisition of Symbolic Skills (pp. 391405).New York: Springer.Google Scholar
Chase, W. G., & Ericsson, K. A. (1981). Skilled memory. In Anderson, J. R. (Ed.), Cognitive Skills and Their Acquisition (pp. 141189). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Chase, W. G., & Ericsson, K. A. (1982). Skill and working memory. The Psychology of Learning and Motivation, 16, 158.CrossRefGoogle Scholar
Chase, W. G., & Simon, H. A. (1973a). Perception in chess. Cognitive Psychology, 4(1), 5581.CrossRefGoogle Scholar
Chase, W. G., & Simon, H. A. (1973b). The mind’s eye in chess. In Chase, W. G. (Ed.), Visual Information Processing (pp. 215281). New York: Academic Press.Google Scholar
Chebat, D.-R., Rainville, C., Kupers, R., & Ptito, M. (2007). Tactile-visual’ acuity of the tongue in early blind individuals. NeuroReport, 18(18), 19011904.CrossRefGoogle ScholarPubMed
Cohen, L. G., Celnik, P., Pascual-Leone, A., Corwell, B., Faiz, L., Dambrosia, J., Honda, M., et al (1997). Functional relevance of cross-modal plasticity in blind humans. Nature, 389(6647), 180183.CrossRefGoogle ScholarPubMed
Colvin, J. (2008). Talent Is Overrated. Harmondsworth: Penguin.Google Scholar
Connors, M. H., Burns, B. D., & Campitelli, G. (2011). Expertise in complex decision making: the role of search in chess 70 years after de Groot. Cognitive Science, 35(8), 15671579.CrossRefGoogle ScholarPubMed
Corbett, B. A., Carmean, V., Ravizza, S., Wendelken, C., Henry, M. L., Carter, C., & Rivera, S. M. (2009). A functional and structural study of emotion and face processing in children with autism. Psychiatry Research, 173(3), 196205.CrossRefGoogle ScholarPubMed
Coyle, D. (2010). The Talent Code: Greatness Isn’t Born, It’s Grown. New York: Random House.Google Scholar
Craik, F. I., & Lockhart, R. S. (1972). Levels of processing: a framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671684.Google Scholar
Cross, E. S., Hamilton, A. F. de C., & Grafton, S. T. (2006). Building a motor simulation de novo: observation of dance by dancers. NeuroImage, 31(3), 12571267.Google Scholar
Cross, E. S., Kraemer, D. J. M., Hamilton, A. F. de C., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19(2), 315326.Google Scholar
Curby, K. M., & Gauthier, I. (2010). To the trained eye: perceptual expertise alters visual processing. Topics in Cognitive Science, 2(2), 189201.CrossRefGoogle Scholar
Dayan, E., & Cohen, L. G. (2011). Neuroplasticity subserving motor skill learning. Neuron, 72(3), 443454.CrossRefGoogle ScholarPubMed
de Groot, A. (1978). Thought and Choice in Chess (2nd edn.). Berlin: Mouton De Gruyter.Google Scholar
de Heering, A., & Rossion, B. (2008). Prolonged visual experience in adulthood modulates holistic face perception. PLoS One, 3(5), e2317.CrossRefGoogle ScholarPubMed
Delon-Martin, C., Plailly, J., Fonlupt, P., Veyrac, A., & Royet, J.-P. (2013). Perfumers’ expertise induces structural reorganization in olfactory brain regions. NeuroImage, 68, 5562.CrossRefGoogle ScholarPubMed
Desmurget, M., Reilly, K. T., Richard, N., Szathmari, A., Mottolese, C., & Sirigu, A. (2009). Movement intention after parietal cortex stimulation in humans. Science, 324(5928), 811813.CrossRefGoogle ScholarPubMed
Detterman, D. K. (Ed.) (2014). Acquiring Expertise: Ability, Practice, and Other Influences, Intelligence, 45: Special Issue).Google Scholar
Di, X., Zhu, S., Jin, H., Wang, P., Ye, Z., Zhou, K., Zhou, Y., et al. (2012). Altered resting brain function and structure in professional badminton players. Brain Connectivity, 2, 225233.Google Scholar
Diamond, R., & Carey, S. (1986). Why faces are and are not special: an effect of expertise. Journal of Experimental Psychology. General, 115(2), 107117.CrossRefGoogle Scholar
Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: changes in grey matter induced by training. Nature, 427(6972), 311312.Google Scholar
Duan, X., He, S., Liao, W., Liang, D., Qiu, L., Wei, L., Li, Y., et al. (2012). Reduced caudate volume and enhanced striatal-DMN integration in chess experts. NeuroImage, 60(2), 12801286.CrossRefGoogle ScholarPubMed
Duan, X., Long, Z., Chen, H., Liang, D., Qiu, L., Huang, X., Liu, T. C., et al. (2014). Functional organization of intrinsic connectivity networks in Chinese-chess experts. Brain Research, 1558, 3343.CrossRefGoogle ScholarPubMed
Engel, A., Hijmans, B. S., Cerliani, L., Bangert, M., Nanetti, L., Keller, P. E., & Keysers, C. (2014). Inter-individual differences in audio-motor learning of piano melodies and white matter fiber tract architecture. Human Brain Mapping, 35(5), 24832497.CrossRefGoogle ScholarPubMed
Engvig, A., Fjell, A. M., Westlye, L. T., Moberget, T., Sundseth, Ø., Larsen, V. A., & Walhovd, K. B. (2010). Effects of memory training on cortical thickness in the elderly. NeuroImage, 52(4), 16671676.CrossRefGoogle ScholarPubMed
Epstein, D. (2013). The Sports Gene: Inside the Science of Extraordinary Athletic Performance. Harmondsworth: Penguin.Google Scholar
Epstein, R. A. (2008). Parahippocampal and retrosplenial contributions to human spatial navigation. Trends in Cognitive Sciences, 12(10), 388396.CrossRefGoogle ScholarPubMed
Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392(6676), 598601.Google Scholar
Ericsson, K. A. (1985). Memory skill. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 39(2), 188231.Google Scholar
Ericsson, K. A. (2008). Deliberate practice and acquisition of expert performance: a general overview. Academic Emergency Medicine, 15(11), 988994.CrossRefGoogle ScholarPubMed
Ericsson, K. A., & Charness, N. (1994). Expert performance: its structure and acquisition. American Psychologist, 49(8), 725747.CrossRefGoogle Scholar
Ericsson, K. A., Charness, N., Feltovich, P. J., & Hoffman, R. R. (Eds.) (2006). The Cambridge Handbook of Expertise and Expert Performance. Cambridge University Press.Google Scholar
Ericsson, K. A., & Chase, W. G. (1982). Exceptional memory: extraordinary feats of memory can be matched or surpassed by people with average memories that have been improved by training. American Scientist, 70(6), 607615.Google Scholar
Ericsson, K. A., Chase, W. G., & Faloon, S. (1980). Acquisition of a memory skill. Science, 208(4448), 11811182.CrossRefGoogle Scholar
Ericsson, K. A., & Delaney, P. F. (1998). Working memory and expert performance. In Gilhooly, K. & Logie, W. R. (Eds.), Working Memory and Thinking: Current Issues in Thinking and Reasoning (pp. 93114). Hove: Psychology Press.Google Scholar
Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211245.CrossRefGoogle ScholarPubMed
Ericsson, K. A., & Kintsch, W. (2000). Shortcomings of generic retrieval structures with slots of the type that Gobet (1993) proposed and modelled. British Journal of Psychology, 91(4), 571590; discussion 591–594.CrossRefGoogle ScholarPubMed
Ericsson, K. A., Krampe, R. T., & Tesch-Roemer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363406.CrossRefGoogle Scholar
Ericsson, K. A., & Lehmann, A. C. (1996). Expert and exceptional performance: evidence of maximal adaptation to task constraints. Annual Review of Psychology, 47, 273305.CrossRefGoogle ScholarPubMed
Ericsson, K. A., Patel, V., & Kintsch, W. (2000). How experts’ adaptations to representative task demands account for the expertise effect in memory recall: comment on Vicente and Wang (1998). Psychological Review, 107(3), 578592.CrossRefGoogle Scholar
Ericsson, K. A., & Simon, H. A. (1993). Protocol Analysis: Verbal Reports as Data (rev. edn.). Cambridge, MA: Bradford Books.CrossRefGoogle Scholar
Ericsson, K. A., & Smith, J. (1991). Toward a General Theory of Expertise: Prospects and Limits. Cambridge University Press.Google Scholar
Ericsson, K. A., & Staszewski, J. J. (1989). Skilled memory and expertise: mechanisms of exceptional performance. In Klahr, D. & Kotovsky, K. (Eds.), Complex Information Processing: The Impact of Herbert A. Simon (pp. 235267). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Evans, K. K., Cohen, M. A., Tambouret, R., Horowitz, T., Kreindel, E., & Wolfe, J. M. (2011). Does visual expertise improve visual recognition memory? Attention, Perception, & Psychophysics, 73(1), 3035.Google Scholar
Facchini, S., & Aglioti, S. M. (2003). Short term light deprivation increases tactile spatial acuity in humans. Neurology, 60(12), 19981999.CrossRefGoogle ScholarPubMed
Feigenbaum, E. A., & Simon, H. A. (1984). EPAM-like models of recognition and learning. Cognitive Science, 8(4), 305336.Google Scholar
Fjell, A. M., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., Dale, A. M., et al. (2009). High consistency of regional cortical thinning in aging across multiple samples. Cerebral Cortex, 19(9), 20012012.Google Scholar
Fodor, J. (1983). The Modularity of Mind: An Essay on Faculty Psychology. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Fox, C., Moon, S., Iaria, G., & Barton, J. (2009). The correlates of subjective perception of identity and expression in the face network: an fMRI adaptation study. NeuroImage, 44(2), 569580.CrossRefGoogle ScholarPubMed
Frank, M. C., & Barner, D. (2012). Representing exact number visually using mental abacus. Journal of Experimental Psychology: General, 141(1), 134149.Google Scholar
Frasnelli, J., Lundström, J. N., Boyle, J. A., Djordjevic, J., Zatorre, R. J., & Jones-Gotman, M. (2010). Neuroanatomical correlates of olfactory performance. Experimental Brain Research, 201(1), 111.Google Scholar
Galea, J. M., Vazquez, A., Pasricha, N., de Xivry, J.-J. O., & Celnik, P. (2011). Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cerebral Cortex, 21(8), 17611770.CrossRefGoogle ScholarPubMed
Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23(27), 92409245.CrossRefGoogle ScholarPubMed
Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nature Neuroscience, 3(2), 191197.CrossRefGoogle ScholarPubMed
Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (1999). Activation of the middle fusiform “face area” increases with expertise in recognizing novel objects. Nature Neuroscience, 2(6), 568573.CrossRefGoogle ScholarPubMed
Gerloff, C., Corwell, B., Chen, R., Hallett, M., & Cohen, L. G. (1997). Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain, 120(Pt 9), 15871602.CrossRefGoogle ScholarPubMed
Gladwell, M. (2008). Outliers: The Story of Success. London: Hachette UK.Google Scholar
Gobet, F. (2000). Some shortcomings of long-term working memory. British Journal of Psychology, 91, 551570.CrossRefGoogle ScholarPubMed
Gobet, F. (2015). Understanding Expertise: A Multi-Disciplinary Approach. Basingstoke: Palgrave Macmillan.Google Scholar
Gobet, F., & Campitelli, G. (2007). The role of domain-specific practice, handedness, and starting age in chess. Developmental Psychology, 43(1), 159172.CrossRefGoogle ScholarPubMed
Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C. H., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5(6), 236243.Google Scholar
Gobet, F., Retschitzki, J., & de Voogt, A. (2004). Moves in Mind: The Psychology of Board Games. Hove: Psychology Press.CrossRefGoogle Scholar
Gobet, F., & Simon, H. A. (1996a). Recall of random and distorted chess positions: implications for the theory of expertise. Memory & Cognition, 24(4), 493503.CrossRefGoogle ScholarPubMed
Gobet, F., & Simon, H. A. (1996b). Recall of rapidly presented random chess positions is a function of skill. Psychonomic Bulletin & Review, 3(2), 159163.Google Scholar
Gobet, F., & Simon, H. A. (1996c). The roles of recognition processes and look-ahead search in time-constrained expert problem solving: evidence from grand-master-level chess. Psychological Science, 7(1), 5255.Google Scholar
Gobet, F., & Simon, H. A. (1996d). Templates in chess memory: a mechanism for recalling several boards. Cognitive Psychology, 31(1), 140.CrossRefGoogle ScholarPubMed
Goldstein, R., Almenberg, J., Dreber, A., Emerson, J. W., Herschkowitsch, A., & Katz, J. (2008). Do more expensive wines taste better? Evidence from a large sample of blind tastings. Journal of Wine Economics, 3(01), 19.CrossRefGoogle Scholar
Gottfried, J. A., Winston, J. S., & Dolan, R. J. (2006). Dissociable codes of odor quality and odorant structure in human piriform cortex. Neuron, 49(3), 467479.Google Scholar
Goulet, C., Bard, C., & Fleury, M. (1989). Expertise differences in preparing to return a tennis serve: a visual information processing approach. Journal of Sport and Exercise Psychology, 11(4), 382398.CrossRefGoogle Scholar
Grabner, R. H., Ansari, D., Reishofer, G., Stern, E., Ebner, F., & Neuper, C. (2007). Individual differences in mathematical competence predict parietal brain activation during mental calculation. NeuroImage, 38(2), 346356.CrossRefGoogle ScholarPubMed
Griffiths, T. D., Büchel, C., Frackowiak, R. S., & Patterson, R. D. (1998). Analysis of temporal structure in sound by the human brain. Nature Neuroscience, 1(5), 422427.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Golarai, G., & Gabrieli, J. (2008). Developmental neuroimaging of the human ventral visual cortex. Trends in Cognitive Sciences, 12(4), 152162.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Knouf, N., & Kanwisher, N. (2004). The fusiform face area subserves face perception, not generic within-category identification. Nature Neuroscience, 7(5), 555562.CrossRefGoogle Scholar
Guida, A., Gobet, F., & Nicolas, S. (2013). Functional cerebral reorganization: a signature of expertise? Reexamining Guida, Gobet, Tardieu, and Nicolas’ (2012) two-stage framework. Frontiers in Human Neuroscience, 7.CrossRefGoogle ScholarPubMed
Guida, A., Gobet, F., Tardieu, H., & Nicolas, S. (2012). How chunks, long-term working memory and templates offer a cognitive explanation for neuroimaging data on expertise acquisition: a two-stage framework. Brain and Cognition, 79(3), 221244.CrossRefGoogle Scholar
Haberstroh, T. (2016). Devotion to the data: how Kawhi Leonard became a superstar. ESPN. Retrieved March 1, 2016, from http://espn.go.com/nba/story/_/id/14763202/how-biometrics-turned-kawhi-leonard-star.Google Scholar
Haller, S., & Radue, E. W. (2005). What is different about a radiologist’s brain? Radiology, 236(3), 983989.CrossRefGoogle ScholarPubMed
Halwani, G. F., Loui, P., Rüber, T., & Schlaug, G. (2011). Effects of practice and experience on the arcuate fasciculus: comparing singers, instrumentalists, and non-musicians. Frontiers in Psychology, 2, 156.CrossRefGoogle ScholarPubMed
Hambrick, D. Z., Mcnamara, B. N., Campitelli, G. (Eds.) (in press). The Science of Expertise. London: Routledge.Google Scholar
Hambrick, D. Z., Macnamara, B. N., Campitelli, G., Ullén, F., & Mosing, M. A. (2016). Beyond born versus made: a new look at expertise. In Ross, B. H. (Ed.), Psychology of Learning and Motivation (Vol. 64, pp. 155). Cambridge, MA: Academic Press.Google Scholar
Hambrick, D. Z., Oswald, F. L., Altmann, E. M., Meinz, E. J., Gobet, F., & Campitelli, G. (2014). Deliberate practice: is that all it takes to become an expert? Intelligence, 45, 3445.CrossRefGoogle Scholar
Hamilton, R., Keenan, J. P., Catala, M., & Pascual-Leone, A. (2000). Alexia for Braille following bilateral occipital stroke in an early blind woman. NeuroReport, 11(2), 237240.CrossRefGoogle Scholar
Hampstead, B. M., Stringer, A. Y., Stilla, R. F., Giddens, M., & Sathian, K. (2012). Mnemonic strategy training partially restores hippocampal activity in patients with mild cognitive impairment. Hippocampus, 22(8), 16521658.CrossRefGoogle ScholarPubMed
Hanakawa, T., Honda, M., Okada, T., Fukuyama, H., & Shibasaki, H. (2003). Neural correlates underlying mental calculation in abacus experts: a functional magnetic resonance imaging study. NeuroImage, 19(2), 296307.CrossRefGoogle ScholarPubMed
Hänggi, J., Brütsch, K., Siegel, A. M., & Jäncke, L. (2014). The architecture of the chess player’s brain. Neuropsychologia, 62, 152162.Google Scholar
Harada, T., Saito, D. N., Kashikura, K.-I., Sato, T., Yonekura, Y., Honda, M., & Sadato, N. (2004). Asymmetrical neural substrates of tactile discrimination in humans: a functional magnetic resonance imaging study. Journal of Neuroscience, 24(34), 75247530.CrossRefGoogle ScholarPubMed
Harel, A. (2015). What is special about expertise? Visual expertise reveals the interactive nature of real-world object recognition. Neuropsychologia, 83, 8899.CrossRefGoogle ScholarPubMed
Harel, A., Gilaie-Dotan, S., Malach, R., & Bentin, S. (2010). Top-down engagement modulates the neural expressions of visual expertise. Cerebral Cortex, 20(10), 23042318.Google Scholar
Harel, A., Kravitz, D., & Baker, C. I. (2013). Beyond perceptual expertise: revisiting the neural substrates of expert object recognition. Frontiers in Human Neuroscience, 7, 885.CrossRefGoogle ScholarPubMed
Harley, E. M., Pope, W. B., Villablanca, J. P., Mumford, J., Suh, R., Mazziotta, J. C., Enzmann, D., et al. (2009). Engagement of fusiform cortex and disengagement of lateral occipital cortex in the acquisition of radiological expertise. Cerebral Cortex, 19(11), 27462754.CrossRefGoogle ScholarPubMed
Hatano, G. (1988). Social and motivational bases for mathematical understanding. New Directions for Child and Adolescent Development, 1988(41), 5570.Google Scholar
Hatano, G., Miyake, Y., & Binks, M. G. (1977). Performance of expert abacus operators. Cognition, 5(1), 4755.Google Scholar
Hatano, G., & Osawa, K. (1983). Digit memory of grand experts in abacus-derived mental calculation. Cognition, 15(1), 95110.Google Scholar
Herzmann, G., Kunina, O., Sommer, W., & Wilhelm, O. (2010). Individual differences in face cognition: brain–behavior relationships. Journal of Cognitive Neuroscience, 22(3), 571589.CrossRefGoogle ScholarPubMed
Hird, J. S., Landers, D. M., Thomas, J. R., & Horan, J. J. (1991). Physical practice is superior to mental practice in enhancing cognitive and motor task performance. Journal of Sport & Exercise Psychology, 13(3), 281293.Google Scholar
Hodges, N. J., Starkes, J. L., & MacMahon, C. (2006). Expert performance in sport: a cognitive perspective. In Ericsson, et al., Cambridge Handbook of Expertise (pp. 471488).CrossRefGoogle Scholar
Howe, M. J., Davidson, J. W., & Sloboda, J. A. (1998). Innate talents: reality or myth? Behavioral and Brain Sciences, 21(3), 399407; discussion 407442.Google Scholar
Hu, Y., & Ericsson, K. A. (2012). Memorization and recall of very long lists accounted for within the long-term working memory framework. Cognitive Psychology, 64(4), 235266.Google Scholar
Hu, Y., Ericsson, K. A., Yang, D., & Lu, C. (2009). Superior self-paced memorization of digits in spite of a normal digit span: the structure of a memorist’s skill. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(6), 14261442.Google Scholar
Hu, Y., Geng, F., Tao, L., Hu, N., Du, F., Fu, K., & Chen, F. (2011). Enhanced white matter tracts integrity in children with abacus training. Human Brain Mapping, 32(1), 1021.Google Scholar
Huang, L., Song, Y., Li, J., Zhen, Z., Yang, Z., & Liu, J. (2014). Individual differences in cortical face selectivity predict behavioral performance in face recognition. Frontiers in Human Neuroscience, 8, 483.CrossRefGoogle ScholarPubMed
Humphreys, K., Hasson, U., Avidan, G., Minshew, N., & Behrmann, M. (2008). Cortical patterns of category-selective activation for faces, places and objects in adults with autism. Autism Research, 1(1), 5263.CrossRefGoogle ScholarPubMed
Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C., & Schlaug, G. (2009). The effects of musical training on structural brain development: a longitudinal study. Annals of the New York Academy of Sciences, 1169, 182186.Google Scholar
Jäncke, L., Koeneke, S., Hoppe, A., Rominger, C., & Hänggi, J. (2009). The architecture of the golfer’s brain. PLoS One, 4(3), e4785.CrossRefGoogle ScholarPubMed
Jensen, J. L., Marstrand, P. C. D., & Nielsen, J. B. (2005). Motor skill training and strength training are associated with different plastic changes in the central nervous system. Journal of Applied Physiology, 99(4), 15581568.Google Scholar
Jones, C. M., & Miles, T. R. (1978). Use of advance cues in predicting the flight of a lawn tennis ball. Journal of Human Movement Studies, 4(4), 231235.Google Scholar
Jung, W. H., Kim, S. N., Lee, T. Y., Jang, J. H., Choi, C.-H., Kang, D.-H., & Kwon, J. S. (2013). Exploring the brains of Baduk (Go) experts: gray matter morphometry, resting-state functional connectivity, and graph theoretical analysis. Frontiers in Human Neuroscience, 7, 633.CrossRefGoogle ScholarPubMed
Kaas, J. H. (1995). The reorganization of sensory and motor maps in adult mammals. In Gazzaniga, M. S. (Ed.), The Cognitive Neurosciences (pp. 5171). Cambridge, MA: MIT Press.Google Scholar
Kalakoski, P. S. V. (1998). Apperception and imagery in blindfold chess. Memory, 6(1), 6790.Google Scholar
Kalakoski, V. (2007). Effect of skill level on recall of visually presented patterns of musical notes. Scandinavian Journal of Psychology, 48(2), 8796.CrossRefGoogle ScholarPubMed
Kalakoski, V., & Saariluoma, P. (2001). Taxi drivers’ exceptional memory of street names. Memory & Cognition, 29(4), 634638.CrossRefGoogle ScholarPubMed
Kalamangalam, G. P., & Ellmore, T. M. (2014). Focal cortical thickness correlates of exceptional memory training in Vedic priests. Frontiers in Human Neuroscience, 8, 833.CrossRefGoogle ScholarPubMed
Kaltwasser, L., Hildebrandt, A., Recio, G., Wilhelm, O., & Sommer, W. (2014). Neurocognitive mechanisms of individual differences in face cognition: a replication and extension. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 861878.CrossRefGoogle ScholarPubMed
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 43024311.CrossRefGoogle ScholarPubMed
Kanwisher, N., & Yovel, G. (2006). The fusiform face area: a cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 361(1476), 21092128.CrossRefGoogle ScholarPubMed
Kauffman, T., Théoret, H., & Pascual-Leone, A. (2002). Braille character discrimination in blindfolded human subjects. NeuroReport, 13(5), 571574.CrossRefGoogle ScholarPubMed
Keenan, J. P., Thangaraj, V., Halpern, A. R., & Schlaug, G. (2001). Absolute pitch and planum temporale. NeuroImage, 14(6), 14021408.Google Scholar
Kelly, A. M. C., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15(8), 10891102.CrossRefGoogle ScholarPubMed
Klein, M., Coles, M. G., & Donchin, E. (1984). People with absolute pitch process tones without producing a p300. Science, 223(4642), 13061309.Google Scholar
Klein, M. E., & Zatorre, R. J. (2011). A role for the right superior temporal sulcus in categorical perception of musical chords. Neuropsychologia, 49(5), 878887.Google Scholar
Kliegl, R., Smith, J., Heckhausen, J., & Baltes, P. B. (1987). Mnemonic training for the acquisition of skilled digit memory. Cognition and Instruction, 4(4), 203223.Google Scholar
Kondo, Y., Suzuki, M., Mugikura, S., Abe, N., Takahashi, S., Iijima, T., & Fujii, T. (2005). Changes in brain activation associated with use of a memory strategy: a functional MRI study. NeuroImage, 24(4), 11541163.Google Scholar
Krawczyk, D. C., Boggan, A. L., McClelland, M. M., & Bartlett, J. C. (2011). The neural organization of perception in chess experts. Neuroscience Letters, 499(2), 6469.Google Scholar
Krupinski, E. A. (2000). The importance of perception research in medical imaging. Radiation Medicine, 18(6), 329334.Google Scholar
Ku, Y., Hong, B., Zhou, W., Bodner, M., & Zhou, Y.-D. (2012). Sequential neural processes in abacus mental addition: an EEG and fMRI case study. PLoS One, 7(5), e36410.Google Scholar
Kundel, H. L., & Nodine, C. F. (1975). Interpreting chest radiographs without visual search. Radiology, 116(3), 527532.CrossRefGoogle ScholarPubMed
Kundel, H. L., Nodine, C. F., Conant, E. F., & Weinstein, S. P. (2007). Holistic component of image perception in mammogram interpretation: gaze-tracking study. Radiology, 242(2), 396402.CrossRefGoogle ScholarPubMed
Kupers, R., Beaulieu-Lefebvre, M., Schneider, F. C., Kassuba, T., Paulson, O. B., Siebner, H. R., & Ptito, M. (2011). Neural correlates of olfactory processing in congenital blindness. Neuropsychologia, 49(7), 20372044.Google Scholar
Kupers, R., & Ptito, M. (2014). Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neuroscience & Biobehavioral Reviews, 41, 3652.Google Scholar
Landi, S. M., Baguear, F., & Della-Maggiore, V. (2011). One week of motor adaptation induces structural changes in primary motor cortex that predict long-term memory one year later. Journal of Neuroscience, 31(33), 1180811813.Google Scholar
Langner, R., Erb, M., & Grodd, W. (June 2006). How the mind makes the decisions up. Poster presented at the Organization for Human Brain Mapping conference in Venice, Italy.Google Scholar
Lee, Y.-S., Janata, P., Frost, C., Hanke, M., & Granger, R. (2011). Investigation of melodic contour processing in the brain using multivariate pattern-based fMRI. NeuroImage, 57(1), 293300.CrossRefGoogle ScholarPubMed
Li, W., Luxenberg, E., Parrish, T., & Gottfried, J. A. (2006). Learning to smell the roses: experience-dependent neural plasticity in human piriform and orbitofrontal cortices. Neuron, 52(6), 10971108.CrossRefGoogle ScholarPubMed
Lu, L. H., Dapretto, M., O’Hare, E. D., Kan, E., McCourt, S. T., Thompson, P. M., Toga, A. W., Bookheimer, S. Y. & Sowell, E. R. (2009). Relationships between brain activation and brain structure in normally developing children. Cerebral Cortex, 19(11), 25952604.CrossRefGoogle ScholarPubMed
Lucan, J. N., Foxe, J. J., Gomez-Ramirez, M., Sathian, K., & Molholm, S. (2010). Tactile shape discrimination recruits human lateral occipital complex during early perceptual processing. Human Brain Mapping, 31(11), 18131821.Google Scholar
Luria, A. R. (1968). The Mind of a Mnemonist: A Little Book About a Vast Memory (Solotaroff, L., Trans.). New York: Basic Books.Google Scholar
Macnamara, B. N., Hambrick, D. Z., & Oswald, F. L. (2014). Deliberate practice and performance in music, games, sports, education, and professions: a meta-analysis. Psychological Science, 25(8), 16081618.CrossRefGoogle ScholarPubMed
Maguire, E. A., Frackowiak, R. S., & Frith, C. D. (1997). Recalling routes around London: activation of the right hippocampus in taxi drivers. Journal of Neuroscience, 17(18), 71037110.Google Scholar
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 43984403.Google Scholar
Maguire, E. A., Valentine, E. R., Wilding, J. M., & Kapur, N. (2003). Routes to remembering: the brains behind superior memory. Nature Neuroscience, 6(1), 9095.CrossRefGoogle ScholarPubMed
Maguire, E. A., Woollett, K., & Spiers, H. J. (2006). London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus, 16(12), 10911101.CrossRefGoogle ScholarPubMed
Mann, D. T. Y., Williams, A. M., Ward, P., & Janelle, C. M. (2007). Perceptual-cognitive expertise in sport: a meta-analysis. Journal of Sport & Exercise Psychology, 29(4), 457478.CrossRefGoogle ScholarPubMed
Mannix, C. (2012). Arum, one of boxing’s most powerful promoters, still hustling. In Sports Illustrated, December 6.Google Scholar
Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L., & Ungerleider, L. G. (1995). Discrete cortical regions associated with knowledge of color and knowledge of action. Science, 270(5233), 102105.Google Scholar
McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences, 7(7), 293299.Google Scholar
McClure, S. M., Li, J., Tomlin, D., Cypert, K. S., Montague, L. M., & Montague, P. R. (2004). Neural correlates of behavioral preference for culturally familiar drinks. Neuron, 44(2), 379387.CrossRefGoogle ScholarPubMed
McDowall, M. (2011). Ronaldo: Tested to the Limit. Documentary Film.Google Scholar
Melo, M., Scarpin, D. J., Amaro, E., Passos, R. B., Sato, J. R., Friston, K. J., & Price, C. J. (2011). How doctors generate diagnostic hypotheses: a study of radiological diagnosis with functional magnetic resonance imaging. PLoS One, 6(12), e28752.CrossRefGoogle ScholarPubMed
Merabet, L. B., Hamilton, R., Schlaug, G., Swisher, J. D., Kiriakopoulos, E. T., Pitskel, N. B., Kauffman, T. & Pascual-Leone, A. (2008). Rapid and reversible recruitment of early visual cortex for touch. PLoS One, 3(8), e3046.Google Scholar
Merritt, J. O. (1979). None in a million: results of mass screening for eidetic ability using objective tests published in newspapers and magazines. Behavioral and Brain Sciences, 2(04), 612.Google Scholar
Michel, C., Rossion, B., Han, J., Chung, C.-S., & Caldara, R. (2006). Holistic processing is finely tuned for faces of one’s own race. Psychological Science, 17(7), 608615.CrossRefGoogle ScholarPubMed
Miller, G. A. (1956). The magical number seven plus or minus two: some limits on our capacity for processing information. Psychological Review, 63(2), 8197.CrossRefGoogle ScholarPubMed
Milton, J., Solodkin, A., Hlustík, P., & Small, S. L. (2007). The mind of expert motor performance is cool and focused. NeuroImage, 35(2), 804813.CrossRefGoogle ScholarPubMed
Mireles, D. E., & Charness, N. (2002). Computational explorations of the influence of structured knowledge on age-related cognitive decline. Psychology and Aging, 17(2), 245259.CrossRefGoogle ScholarPubMed
Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: two cortical pathways. Trends in Neurosciences, 6, 414417.CrossRefGoogle Scholar
Miyazaki, K. (1993). Absolute pitch as an inability: identification of musical intervals in a tonal context. Music Perception, 11(1), 5571.CrossRefGoogle Scholar
Moran, A., Guillot, A., Macintyre, T., & Collet, C. (2012). Re-imagining motor imagery: building bridges between cognitive neuroscience and sport psychology. British Journal of Psychology, 103(2), 224247.CrossRefGoogle ScholarPubMed
Morrot, G., Brochet, F., & Dubourdieu, D. (2001). The color of odors. Brain and Language, 79(2), 309320.CrossRefGoogle ScholarPubMed
Moxley, J. H., Ericsson, K. A., Charness, N., & Krampe, R. T. (2012). The role of intuition and deliberative thinking in experts’ superior tactical decision-making. Cognition, 124(1), 7278.CrossRefGoogle ScholarPubMed
Müller, G. E. (1911). Zur Analyse der Gedachtnistatigkeit und des Vorstellungsverlaufes: Teil I. Zeitschrift für Psychologie, Ergänzungsband 5.Google Scholar
Myles-Worsley, M., Johnston, W. A., & Simons, M. A. (1988). The influence of expertise on X-ray image processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(3), 553557.Google Scholar
Naito, E., & Hirose, S. (2014). Efficient foot motor control by Neymar’s brain. Frontiers in Human Neuroscience, 8, 594.CrossRefGoogle ScholarPubMed
Nodine, C. F., & Krupinski, E. A. (1998). Perceptual skill, radiology expertise, and visual test performance with NINA and WALDO. Academic Radiology, 5(9), 603612.CrossRefGoogle ScholarPubMed
Nodine, C. F., & Mello-Thoms, C. (2000). The nature of expertise in radiology. In Handbook of Medical Imaging. SPIE.CrossRefGoogle Scholar
Nyberg, L., Sandblom, J., Jones, S., Neely, A. S., Petersson, K. M., Ingvar, M., & Bäckman, L. (2003). Neural correlates of training-related memory improvement in adulthood and aging. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 1372813733.CrossRefGoogle ScholarPubMed
Olsson, C.-J., & Lundström, P. (2013). Using action observation to study superior motor performance: a pilot fMRI study. Frontiers in Human Neuroscience, 7.CrossRefGoogle ScholarPubMed
Pantev, C., Engelien, A., Candia, V., & Elbert, T. (2001). Representational cortex in musicians: plastic alterations in response to musical practice. Annals of the New York Academy of Sciences, 930, 300314.CrossRefGoogle ScholarPubMed
Park, S., & Chun, M. M. (2009). Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception. NeuroImage, 47(4), 17471756.Google Scholar
Park, I. S., Lee, K. J., Han, J. W., Lee, N. J., Lee, W. T., Park, K. A., & Rhyu, I. J. (2009). Experience-dependent plasticity of cerebellar vermis in basketball players. Cerebellum, 8(3), 334339.Google Scholar
Pascual-Leone, A., Nguyet, D., Cohen, L. G., Brasil-Neto, J. P., Cammarota, A., & Hallett, M. (1995). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. Journal of Neurophysiology, 74(3), 10371045.CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28, 377401.CrossRefGoogle ScholarPubMed
Pascual-Leone, A., & Torres, F. (1993). Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain, 116 (Pt 1), 3952.CrossRefGoogle Scholar
Patterson, R. D., Uppenkamp, S., Johnsrude, I. S., & Griffiths, T. D. (2002). The processing of temporal pitch and melody information in auditory cortex. Neuron, 36(4), 767776.CrossRefGoogle ScholarPubMed
Pazart, L., Comte, A., Magnin, E., Millot, J.-L., & Moulin, T. (2014). An fMRI study on the influence of sommeliers’ expertise on the integration of flavor. Frontiers in Behavioral Neuroscience, 8, 358.CrossRefGoogle Scholar
Perez, M. A., Lungholt, B. K. S., Nyborg, K., & Nielsen, J. B. (2004). Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Experimental Brain Research, 159(2), 197205.Google Scholar
Pesenti, M., Seron, X., Samson, D., & Duroux, B. (1999). Basic and exceptional calculation abilities in a calculating prodigy: a case study. Mathematical Cognition, 5(2), 97148.CrossRefGoogle Scholar
Pesenti, M., Zago, L., Crivello, F., Mellet, E., Samson, D., Duroux, B., Seron, X., et al. (2001). Mental calculation in a prodigy is sustained by right prefrontal and medial temporal areas. Nature Neuroscience, 4(1), 103107.Google Scholar
Plailly, J., Delon-Martin, C., & Royet, J.-P. (2012). Experience induces functional reorganization in brain regions involved in odor imagery in perfumers. Human Brain Mapping, 33(1), 224234.Google Scholar
Plassmann, H., O’Doherty, J., Shiv, B., & Rangel, A. (2008). Marketing actions can modulate neural representations of experienced pleasantness. Proceedings of the National Academy of Sciences of the United States of America, 105(3), 10501054.Google Scholar
Pollak, S. D., Messner, M., Kistler, D. J., & Cohn, J. F. (2009). Development of perceptual expertise in emotion recognition. Cognition, 110(2), 242247.CrossRefGoogle ScholarPubMed
Preacher, K. J., Rucker, D. D., MacCallum, R. C., & Nicewander, W. A. (2005). Use of the extreme groups approach: a critical reexamination and new recommendations. Psychological Methods, 10(2), 178192.Google Scholar
Ramachandran, V. S. (1993). Behavioral and magnetoencephalographic correlates of plasticity in the adult human brain. Proceedings of the National Academy of Sciences of the United States of America, 90(22), 1041310420.CrossRefGoogle ScholarPubMed
Raz, A., Packard, M. G., Alexander, G. M., Buhle, J. T., Zhu, H., Yu, S., & Peterson, B. S. (2009). A slice of π: an exploratory neuroimaging study of digit encoding and retrieval in a superior memorist. Neurocase, 15(5), 361372.CrossRefGoogle Scholar
Reingold, E. M., & Sheridan, H. (2011). Eye movements and visual expertise in chess and medicine. In Gilchrist, I. D. & Everling, S. (Eds.), Oxford Handbook on Eye Movements (pp. 528550). Oxford University Press.Google Scholar
Renier, L., Cuevas, I., Grandin, C. B., Dricot, L., Plaza, P., Lerens, E., Rombaux, P., et al. (2013). Right occipital cortex activation correlates with superior odor processing performance in the early blind. PLoS One, 8(8), e71907.CrossRefGoogle ScholarPubMed
Renier, L., De Volder, A. G., & Rauschecker, J. P. (2014). Cortical plasticity and preserved function in early blindness. Neuroscience & Biobehavioral Reviews, 41, 5363.CrossRefGoogle ScholarPubMed
Rhodes, G., Byatt, G., Michie, P. T., & Puce, A. (2004). Is the fusiform face area specialized for faces, individuation, or expert individuation? Journal of Cognitive Neuroscience, 16(2), 189203.CrossRefGoogle ScholarPubMed
Richler, J. J., Cheung, O. S., & Gauthier, I. (2011). Holistic processing predicts face recognition. Psychological Science, 22(4), 464471.CrossRefGoogle ScholarPubMed
Richler, J. J., Palmeri, T. J., & Gauthier, I. (2012). Meanings, mechanisms, and measures of holistic processing. Frontiers in Psychology, 3, 553.Google Scholar
Richman, H. B., Staszewski, J. J., & Simon, H. A. (1995). Simulation of expert memory using EPAM IV. Psychological Review, 102(2), 305330.Google Scholar
Rizzolatti, G. (2005). The mirror neuron system and its function in humans. Anatomy and Embryology, 210(5–6), 419421.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Roberts, R. E., Bain, P. G., Day, B. L., & Husain, M. (2013). Individual differences in expert motor coordination associated with white matter microstructure in the cerebellum. Cerebral Cortex, 23(10), 22822292.CrossRefGoogle ScholarPubMed
Rombaux, P., Huart, C., De Volder, A. G., Cuevas, I., Renier, L., Duprez, T., & Grandin, C. (2010). Increased olfactory bulb volume and olfactory function in early blind subjects. NeuroReport, 21(17), 10691073.CrossRefGoogle ScholarPubMed
Saariluoma, P. (1995). Chess Players’ Thinking: A Cognitive Psychological Approach. London: Routledge.Google Scholar
Saariluoma, P., & Kalakoski, V. (1997). Skilled imagery and long-term working memory. American Journal of Psychology, 110, 177201.Google Scholar
Sadato, N. (2005). How the blind “see” Braille: lessons from functional magnetic resonance imaging. Neuroscientist, 11(6), 577582.Google Scholar
Sadato, N., Pascual-Leone, A., Grafman, J., Deiber, M. P., Ibanez, V., & Hallett, M. (1998). Neural networks for Braille reading by the blind. Brain, 121(7), 12131229.Google Scholar
Sadato, N., Pascual-Leone, A., Grafman, J., Ibañez, V., Deiber, M. P., Dold, G., & Hallett, M. (1996). Activation of the primary visual cortex by Braille reading in blind subjects. Nature, 380(6574), 526528.CrossRefGoogle ScholarPubMed
Sadeh, B., Podlipsky, I., Zhdanov, A., & Yovel, G. (2010). Event-related potential and functional MRI measures of face-selectivity are highly correlated: a simultaneous ERP-fMRI investigation. Human Brain Mapping, 31(10), 14901501.Google Scholar
Salthouse, T. (2009). Major Issues in Cognitive Aging. Oxford University Press.CrossRefGoogle Scholar
Sathian, K., & Stilla, R. (2010). Cross-modal plasticity of tactile perception in blindness. Restorative Neurology and Neuroscience, 28(2), 271281.CrossRefGoogle ScholarPubMed
Scherf, K. S., Behrmann, M., Humphreys, K., & Luna, B. (2007). Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Developmental Science, 10(4), F15F30.CrossRefGoogle ScholarPubMed
Schlaug, G. (2001). The brain of musicians: a model for functional and structural adaptation. Annals of the New York Academy of Sciences, 930, 281299.CrossRefGoogle Scholar
Schlaug, G., Jäncke, L., Huang, Y., Staiger, J. F., & Steinmetz, H. (1995). Increased corpus callosum size in musicians. Neuropsychologia, 33(8), 10471055.Google Scholar
Schlaug, G., Jancke, L., Huang, Y., & Steinmetz, H. (1995). In vivo evidence of structural brain asymmetry in musicians. Science, 267(5198), 699701.Google Scholar
Schlaug, G., Norton, A., Overy, K., & Winner, E. (2005). Effects of music training on the child’s brain and cognitive development. Annals of the New York Academy of Sciences, 1060, 219230.CrossRefGoogle ScholarPubMed
Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82(4), 225261.Google Scholar
Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5(7), 688694.CrossRefGoogle ScholarPubMed
Schneider, W., & Chein, J. M. (2003). Controlled & automatic processing: behavior, theory, and biological mechanisms. Cognitive Science, 27(3), 525559.Google Scholar
Scholz, J., Klein, M. C., Behrens, T. E. J., & Johansen-Berg, H. (2009). Training induces changes in white-matter architecture. Nature Neuroscience, 12(11), 13701371.CrossRefGoogle ScholarPubMed
Schulze, K., Gaab, N., & Schlaug, G. (2009). Perceiving pitch absolutely: comparing absolute and relative pitch possessors in a pitch memory task. BMC Neuroscience, 10(1), 106.CrossRefGoogle Scholar
Schwarzlose, R. F. (2005). Separate face and body selectivity on the fusiform gyrus. Journal of Neuroscience, 25(47), 1105511059.CrossRefGoogle ScholarPubMed
Seubert, J., Freiherr, J., Frasnelli, J., Hummel, T., & Lundstrom, J. N. (2013). Orbitofrontal cortex and olfactory bulb volume predict distinct aspects of olfactory performance in healthy subjects. Cerebral Cortex, 23(10), 24482456.CrossRefGoogle ScholarPubMed
Shallice, T. (1988). From Neuropsychology to Mental Structure. Cambridge University Press.Google Scholar
Shannon, C. E. (1950). XXII. Programming a computer for playing chess. Philosophical Magazine, 41(314), 256275.Google Scholar
Shanteau, J. (1992). Competence in experts: the role of task characteristics. Organizational Behavior and Human Decision Processes, 53(2), 252266.Google Scholar
Simon, H. A., & Chase, W. G. (1973). Skill in chess: experiments with chess-playing tasks and computer simulation of skilled performance throw light on some human perceptual and memory processes. American Scientist, 61, 394403.Google Scholar
Singer, R. N., Cauraugh, J. H., Chen, D., Steinberg, G. M., & Frehlich, S. G. (1996). Visual search, anticipation, and reactive comparisons between highly-skilled and beginning tennis players. Journal of Applied Sport Psychology, 8(1), 926.Google Scholar
Sloboda, J. A. (1984). Experimental studies of music reading: a review. Music Perception, 2(2), 222236.Google Scholar
Spence, C., & Piqueras-Fiszman, B. (2014). The Perfect Meal: The Multisensory Science of Food and Dining. Chichester: Wiley.CrossRefGoogle Scholar
Stewart, L., Henson, R., Kampe, K., Walsh, V., Turner, R., & Frith, U. (2003a). Becoming a pianist: an fMRI study of musical literacy acquisition. Annals of the New York Academy of Sciences, 999, 204208.CrossRefGoogle ScholarPubMed
Stewart, L., Henson, R., Kampe, K., Walsh, V., Turner, R., & Frith, U. (2003b). Brain changes after learning to read and play music. NeuroImage, 20(1), 7183.Google Scholar
Stilla, R., Deshpande, G., LaConte, S., Hu, X., & Sathian, K. (2007). Posteromedial parietal cortical activity and inputs predict tactile spatial acuity. Journal of Neuroscience, 27(41), 1109111102.Google Scholar
Stilla, R., & Sathian, K. (2008). Selective visuo-haptic processing of shape and texture. Human Brain Mapping, 29(10), 11231138.Google Scholar
Stromeyer, C. F., & Psotka, J. (1970). The detailed texture of eidetic images. Nature, 225(5230), 346349.CrossRefGoogle ScholarPubMed
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643662.Google Scholar
Sturman, M. C. (2003). Searching for the inverted U-shaped relationship between time and performance: meta-analyses of the experience/performance, tenure/performance, and age/performance relationships. Journal of Management, 29(5), 609640.CrossRefGoogle Scholar
Sullivan, E. V., & Pfefferbaum, A. (2006). Diffusion tensor imaging and aging. Neuroscience & Biobehavioral Reviews, 30(6), 749761.Google Scholar
Sun, F. T., Miller, L. M., Rao, A. A., & D’Esposito, M. (2007). Functional connectivity of cortical networks involved in bimanual motor sequence learning. Cerebral Cortex, 17(5), 12271234.Google Scholar
Swensson, R. G. (1980). A two-stage detection model applied to skilled visual search by radiologists. Attention, Perception, & Psychophysics, 27(1), 1116.CrossRefGoogle Scholar
Takeuchi, A. H., & Hulse, S. H. (1993). Absolute pitch. Psychological Bulletin, 113(2), 345361.CrossRefGoogle ScholarPubMed
Tanaka, J. W., Kiefer, M., & Bukach, C. M. (2004). A holistic account of the own-race effect in face recognition: evidence from a cross-cultural study. Cognition, 93(1), B19.Google Scholar
Tanaka, S., Michimata, C., Kaminaga, T., Honda, M., & Sadato, N. (2002). Superior digit memory of abacus experts: an event-related functional MRI study. NeuroReport, 13(17), 21872191.Google Scholar
Tanaka, S., Seki, K., Hanakawa, T., Harada, M., Sugawara, S. K., Sadato, N., Watanabe, K., et al. (2012). Abacus in the brain: a longitudinal functional MRI study of a skilled abacus user with a right hemispheric lesion. Frontiers in Psychology, 3, 315.CrossRefGoogle Scholar
Tangen, J. M., Thompson, M. B., & McCarthy, D. J. (2011). Identifying fingerprint expertise. Psychological Science, 22(8), 995997.Google Scholar
Tarr, M. J., & Cheng, Y. D. (2003). Learning to see faces and objects. Trends in Cognitive Sciences, 7(1), 2330.CrossRefGoogle ScholarPubMed
Thompson, P. (1980). Margaret Thatcher: a new illusion. Perception, 9(4), 483484.CrossRefGoogle Scholar
Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., & Rizzolatti, G. (2001). I know what you are doing: a neurophysiological study. Neuron, 31(1), 155165.Google Scholar
Vaci, N., Gula, B., & Bilalić, M. (2014). Restricting range restricts conclusions. Frontiers in Psychology, 5, 569.Google Scholar
Vaci, N., Gula, B., & Bilalić, M. (2015). Is age really cruel to experts? Compensatory effects of activity. Psychology and Aging, 30(4), 740754.Google Scholar
Valenzuela, M. J., Jones, M., Wen, W., Rae, C., Graham, S., Shnier, R., & Sachdev, P. (2003). Memory training alters hippocampal neurochemistry in healthy elderly. NeuroReport, 14(10), 13331337.Google ScholarPubMed
Van Belle, G., Busigny, T., Lefèvre, P., Joubert, S., Felician, O., Gentile, F., & Rossion, B. (2011). Impairment of holistic face perception following right occipito-temporal damage in prosopagnosia: converging evidence from gaze-contingency. Neuropsychologia, 49(11), 31453150.CrossRefGoogle ScholarPubMed
van Kooten, I. A. J., Palmen, S. J. M. C., von Cappeln, P., Steinbusch, H. W. M., Korr, H., Heinsen, H., Hof, P. R., et al. (2008). Neurons in the fusiform gyrus are fewer and smaller in autism. Brain, 131(Pt 4), 987999.Google Scholar
Vicente, K. J., & Wang, J. H. (1998). An ecological theory of expertise effects in memory recall. Psychological Review, 105(1), 3357.CrossRefGoogle ScholarPubMed
Vollmann, H., Ragert, P., Conde, V., Villringer, A., Classen, J., Witte, O. W., & Steele, C. J. (2014). Instrument specific use-dependent plasticity shapes the anatomical properties of the corpus callosum: a comparison between musicians and non-musicians. Frontiers in Behavioral Neuroscience, 8, 245.CrossRefGoogle ScholarPubMed
Wan, X., Nakatani, H., Ueno, K., Asamizuya, T., Cheng, K., & Tanaka, K. (2011). The neural basis of intuitive best next-move generation in board game experts. Science, 331(6015), 341346.Google Scholar
Wan, C.  Y., & Schlaug, G. (2010). Music making as a tool for promoting brain plasticity across the life span. Neuroscientist, 16(5), 566577.CrossRefGoogle ScholarPubMed
Wan, X., Takano, D., Asamizuya, T., Suzuki, C., Ueno, K., Cheng, K., Ito, T., et al. (2012). Developing intuition: neural correlates of cognitive-skill learning in caudate nucleus. Journal of Neuroscience, 32(48), 1749217501.Google Scholar
Wang, R., Li, J., Fang, H., Tian, M., & Liu, J. (2012). Individual differences in holistic processing predict face recognition ability. Psychological Science, 23(2), 169177.CrossRefGoogle ScholarPubMed
Ward, P., Hodges, N. J., Williams, A. M., & Starkes, J. L. (2004). Deliberate practice and expert performance: defining the path to excellence. In Williams, A. M. & Hodges, N. J. (Eds.), Skill Acquisition in Sport: Research, Theory and Practice (pp. 231258). London: Routledge.Google Scholar
Ward, P., & Williams, A. M. (2003). Perceptual and cognitive skill development in soccer: the multidimensional nature of expert performance. Journal of Sport and Exercise Psychology, 25(1), 93111.Google Scholar
Ward, P., Williams, A. M., & Bennett, S. J. (2002). Visual search and biological motion perception in tennis. Research Quarterly for Exercise and Sport, 73(1), 107112.CrossRefGoogle ScholarPubMed
Wason, P. C. (1960). On the failure to eliminate hypotheses in a conceptual task. Quarterly Journal of Experimental Psychology, 12(3), 129140.CrossRefGoogle Scholar
Wenzel, U., Taubert, M., Ragert, P., Krug, J., & Villringer, A. (2014). Functional and structural correlates of motor speed in the cerebellar anterior lobe. PLoS One, 9(5), e96871.Google Scholar
Whiting, H. T. A. (1969). Acquiring Ball Skill: A Psychological Interpretation. Philadelphia: Lea & Febiger.Google Scholar
William, L. B., & Harter, N. (1899). Studies on the telegraphic language: the acquisition of a hierarchy of habits. Psychological Review, 6(4), 345.Google Scholar
Williams, A. M., Ward, P., Bell-Walker, J., & Ford, P. R. (2012). Perceptual-cognitive expertise, practice history profiles and recall performance in soccer. British Journal of Psychology, 103(3), 393411.Google Scholar
Winner, D. (2012). ESPN FC: Beautiful game. Beautiful mind. In ESPN.Google Scholar
Wong, M., Gnanakumaran, V., & Goldreich, D. (2011). Tactile spatial acuity enhancement in blindness: evidence for experience-dependent mechanisms. Journal of Neuroscience, 31(19), 70287037.Google Scholar
Wong, Y. K., & Gauthier, I. (2010a). A multimodal neural network recruited by expertise with musical notation. Journal of Cognitive Neuroscience, 22(4), 695713.CrossRefGoogle ScholarPubMed
Wong, Y. K., & Gauthier, I. (2010b). Holistic processing of musical notation: dissociating failures of selective attention in experts and novices. Cognitive, Affective & Behavioral Neuroscience, 10(4), 541551.CrossRefGoogle ScholarPubMed
Woollett, K., & Maguire, E. A. (2011). Acquiring “the Knowledge” of London’s layout drives structural brain changes. Current Biology, 21(24), 21092114.CrossRefGoogle ScholarPubMed
Woollett, K., & Maguire, E. A. (2012). Exploring anterograde associative memory in London taxi drivers. NeuroReport, 23(15), 885888.CrossRefGoogle ScholarPubMed
Woollett, K., Spiers, H. J., & Maguire, E. A. (2009). Talent in the taxi: a model system for exploring expertise. Philosophical Transactions of the Royal Society. Series B: Biological Sciences, 364(1522), 14071416.CrossRefGoogle Scholar
Wright, M. J., Bishop, D. T., Jackson, R. C., & Abernethy, B. (2010). Functional MRI reveals expert–novice differences during sport-related anticipation. NeuroReport, 21(2), 9498.Google Scholar
Wright, M. J., Bishop, D. T., Jackson, R. C., & Abernethy, B. (2011). Cortical fMRI activation to opponents’ body kinematics in sport-related anticipation: expert–novice differences with normal and point-light video. Neuroscience Letters, 500(3), 216221.Google Scholar
Wright, M. J., Bishop, D. T., Jackson, R. C., & Abernethy, B. (2013). Brain regions concerned with the identification of deceptive soccer moves by higher-skilled and lower-skilled players. Frontiers in Human Neuroscience, 7, 851.CrossRefGoogle ScholarPubMed
Wright, M. J., & Jackson, R. C. (2007). Brain regions concerned with perceptual skills in tennis: an fMRI study. International Journal of Psychophysiology, 63(2), 214220.CrossRefGoogle ScholarPubMed
Yarrow, K., Brown, P., & Krakauer, J. W. (2009). Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nature Reviews Neuroscience, 10(8), 585596.CrossRefGoogle ScholarPubMed
Yin, L.-J., Lou, Y.-T., Fan, M.-X., Wang, Z.-X., & Hu, Y. (2015). Neural evidence for the use of digit-image mnemonic in a superior memorist: an fMRI study. Frontiers in Human Neuroscience, 9, 109.CrossRefGoogle Scholar
Young, A. W., Hellawell, D., & Hay, D. C. (1987). Configurational information in face perception. Perception, 16(6), 747759.Google Scholar
Yovel, G., Wilmer, J. B., & Duchaine, B. (2014). What can individual differences reveal about face processing? Frontiers in Human Neuroscience, 8, 562.CrossRefGoogle ScholarPubMed
Zatorre, R. J., Perry, D. W., Beckett, C. A., Westbury, C. F., & Evans, A. C. (1998). Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 31723177.Google Scholar
Zhang, J., Li, X., Song, Y., & Liu, J. (2012). The fusiform face area is engaged in holistic, not parts-based, representation of faces. PLoS One, 7(7), e40390.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Merim Bilalić, Alpen-Adria-Universität Klagenfurt, Austria
  • Book: The Neuroscience of Expertise
  • Online publication: 13 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316026847.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Merim Bilalić, Alpen-Adria-Universität Klagenfurt, Austria
  • Book: The Neuroscience of Expertise
  • Online publication: 13 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316026847.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Merim Bilalić, Alpen-Adria-Universität Klagenfurt, Austria
  • Book: The Neuroscience of Expertise
  • Online publication: 13 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316026847.008
Available formats
×