Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-04-30T23:36:22.217Z Has data issue: false hasContentIssue false

Introduction

Published online by Cambridge University Press:  05 October 2010

Matthew Wright
Affiliation:
University of Southampton
Richard Weaver
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

This book has some of its genesis in the, possibly apocryphal, story that at an acoustics conference in the late 1980s a certain distinguished professor, tiring of the proceedings, turned to the assembled researchers and announced

Listen! If what you're doing isn't nonlinear or transonic, then don't bother! It's all been done!

Certainly it has become easy to think of linear acoustics as essentially completed. After all, classic texts such as Morse and Feshbach (1953) give admirably thorough expositions of very general techniques, particularly those based on Green's functions. Cases described by coordinate systems in which the governing equations are separable are extensively tabulated and admit analytic solutions. The alternative is to employ numerical methods, many of them also based on Green's functions, which work in arbitrarily complex geometries. There is perhaps a perception that notwithstanding a host of important applied problems, there are no fundamental issues remaining in linear acoustics. Increased understanding of the richness and complexity of nonlinear problems with the explosion of interest in chaos only serves to make linear systems seem “done and dusted” in comparison.

And yet this picture is overly dismissive. A solution of a linear differential equation depends nonlinearly on its coefficients and the shape of the boundary. The dependence is all the richer if those coefficients are random or if boundary reflections are defocusing. Developments in physics throughout the last four decades, often equally applicable to both quantum and linear acoustic problems, but overwhelmingly more often expressed in the language of the former, have explored this.

Type
Chapter
Information
New Directions in Linear Acoustics and Vibration
Quantum Chaos, Random Matrix Theory and Complexity
, pp. 1 - 4
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×