Published online by Cambridge University Press: 05 October 2010
Introduction
The applicability of random matrix theory (RMT) to acoustic systems has been demonstrated in recent years by a number of acoustical researchers, e.g., Weaver, Ellegaard, Langley, and Soize. Nevertheless, the field remains obscure to acousticians, and newcomers often find themselves perplexed. Why ought we believe this contention that a simple ensemble of random matrices describes an ensemble of structural or acoustic systems? Or more pointedly, why ought a single sample from such an ensemble represent one such system? What are the chief predictions of RMT; of what utility are they, and of what generality? The contention is, at first thought, absurd. And yet there is much empirical evidence of the relevance of RMT. There are furthermore several examples of its utility and correctness; it makes useful and accurate predictions.
There has been much attention paid in the acoustics community to uncertain systems. Although the broad features of an elastic or acoustic structure may be described with some confidence, details can vary, owing to randomness in manufacturing or to accumulated wear, or merely to irregularities that exceed the ability or patience of a numerical model. Such observations are widely invoked to justify the applicability of statistics. Random matrices represent a limit of uncertain systems. It is perhaps unsurprising that in the limit of maximum uncertainty, universal (i.e., pertaining to a class of systems) nontrivial statistics may be derived. These include statistics for the eigenfrequencies and eigenfunctions and for the responses.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.