Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-20T00:01:02.693Z Has data issue: false hasContentIssue false

Chapter 6 - Moons Past

Published online by Cambridge University Press:  05 September 2014

Arlin Crotts
Affiliation:
Columbia University, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The New Moon
Water, Exploration, and Future Habitation
, pp. 174 - 210
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

The Origin of the Moon Revisited” by Taylor, S. R. & Koeberl, C., 2013, Lunar and Planetary Science Conference, 44, 1165;Google Scholar
Destiny or Chance: Our Solar System and its Place in the Cosmos by Taylor, Stuart Ross, 2000, Cambridge: Cambridge University Press, 149.Google Scholar
Apollo 16 Flight Journal edited by Woods, David & Brandt, Tim, 2008, Chapter 20, Day 6, Part 2 (126 hours 10 hours 38 seconds MET), .
The Relationship Between Length and Width of Plutons within the Crustal-Scale Cobequid Shear Zone, Northern Appalachians, Canada” by Koukouvelas, Ioannis K., Pe-Piper, Georgia & Piper, David J. W., 2006, International Journal of Earth Science, 95, 963.CrossRefGoogle Scholar
Mineralogy of Apollo 15415 ‘Genesis Rock’: Source of Anorthosite on Moon” by Steele, Ian M. & Smith, J. V., 1971, Nature, 234, 138)CrossRefGoogle Scholar
Water in the Lunar Mantle: Results from Magma Ocean Modeling” by Elkins-Tanton, L. T., 2010, Lunar and Planetary Science Conference, 41, 1451.Google Scholar
Armalcolite-Ti-Phlogopite-Diopside-Analcite-Bearing Lamproites from Smoky Butte, Garfield County, Montana” by Velde, Danielle, 1975, American Minerologist, 60, 566;Google Scholar
Tranquillityite: The Last Lunar Mineral Comes Down to Earth” by Rasmussen, Birger, Fletcher, Ian, Gregory, Courtney J., Muhling, Janet R. & Suvorova, Alexandra A., 2012, Geology, 40, 83;CrossRefGoogle Scholar
Lunar Mineral Found at Franklin, Sussex Co., New Jersey” by Nikischer, Tony & Orosz, Joe, 2007, Mineral News, 23, 8.)Google Scholar
Overturn of Magma Ocean Ilmenite Cumulate Layer: Implications for Lunar Magmatic Evolution and Formation of a Lunar Core” by Hess, P. C. & Parmentier, E. M., 1993, Lunar and Planetary Science Conference, 24, 651;Google Scholar
On the Scale of Lunar Mantle Overturn Following Magma Ocean Fractional Solidification: The Role for Multiple Scales of Convective Motion” by Parmentier, E. M., 2009, Lunar and Planetary Science Conference, 40, 1781.Google Scholar
Re-examination of the Lunar Magma Ocean Cumulate Overturn Hypothesis: Melting or Mixing Is Required” by Tanton, Linda T. Elkins, Van Orman, James A., Hager, Bradford H. & Grove, Timothy L., 2002, Earth and Planetary Science Letters, 196, 239.CrossRefGoogle Scholar
“Lunar Mare Deposits: Areas, Volumes, Sequence, and Implication for Melting in Source Areas” by Head, James W., in Origins of Mare Basalts and their Implications for Lunar Evolution, 1975, Houston: LPI, 66.Google Scholar
Measurement of Heat of Fusion of Model Basalt in the System Diopside-Forsterite-Anorthite” by Kojitani, Hiroshi & Akaogi, Masaki, 1995, Geophysical Research Letters, 22, 2329.)CrossRefGoogle Scholar
Elemental Composition of the Lunar Surface: Analysis of Gamma Ray Spectroscopy Data from Lunar Prospector” by Prettyman, T. H., Hagerty, J. J., Elphic, R. C., Feldman, W. C., Lawrence, D. J., McKinney, G. W. & Vaniman, D. T., 2006, Journal of Geophysical Research, 111, E12007.CrossRefGoogle Scholar
Emplacement of Long Volcanic Features on the Moon: A Review of the Mare Imbrium Lava Flows and Vallis Schröteri” by Garry, W. B., Warner, N. H. & Zimbelman, J. R., 2007 Fall, American Geophysical Union, abs. P13A-1039;Google Scholar
Emplacement Scenarios for Vallis Schröteri, Aristarchus Plateau, the Moon” by Garry, W. Brent & Bleacher, Jacob E., 2011, Geological Society of AmericaCrossRefGoogle Scholar
Clementine Observations of the Aristarchus Region of the Moon” by McEwen, Alfred S., Robinson, Mark S., Eliason, Eric M., Lucey, Paul G., Duxbury, Tom C. & Spudis, Paul D., 1994, Science, 266, 1858.CrossRefGoogle Scholar
The International Atlas of Lunar Exploration by Stooke, Philip J., 2007, Cambridge: Cambridge University Press, 464Google Scholar
Baldwin, Ralph’s (1912–2010) The Face of the Moon (1949, Chicago: University of Chicago Press)Google Scholar
The Measure of the Moon (1963, Chicago: University of Chicago Press).
The Aristarchus Plateau on the Moon: Nature and Stratigraphy of the Substratum” by Chevrel, S. D., Pinet, P. C., Daydou, Y., Le Mouélic, S., Langevin, Y., Costard, F. & Erard, S., 2009, Lunar and Planetary Science Conference, 40, 1234.Google Scholar
Aristarchus Crater: Mapping of Impact Melt and Absolute Age Determination” by Zanetti, M., Hiesinger, H., van der Bogert, C. H., Reiss, D. & Jolliff, B. L., 2011, Lunar and Planetary Science Conference, 42, 2330.Google Scholar
Imaging of Lunar Surface Maturity” by Lucey, Paul G., Blewett, David T., Taylor, G. Jeffrey & Hawke, B. Ray, 2000, Journal of Geophysical Research, 105, 20377)CrossRefGoogle Scholar
The Optical Maturity of the Ejecta of Small Bright Rayed Lunar Craters” by Grier, J. A., McEwen, A. S., Milazzo, M., Hester, J. A. & Lucey, P. G., 2000, Lunar and Planetary Science Conference, 31, 1950)Google Scholar
The Origin of Lunar Crater Rays” by Hawke, B. Ray, Blewett, D. T., Lucey, P. G., Smith, G. A., Bell, J. F., Campbell, B. A. & Robinson, M. S., 2004, Icarus, 170, 1)CrossRefGoogle Scholar
Gault, Donald E. and Wedekind, John A., “Experimental Studies of Oblique Impact,” Lunar & Planetary Science Conference, 9, Vol. 3 (1978), 3843.Google Scholar
Timing of Crystallization of the Lunar Magma Ocean Constrained by the Oldest Zircon” by Nemchin, A., Timms, N., Pidgeon, R., Geisler, T., Reddy, S. & Meyer, C., 2009, Nature Geoscience, 2, 133.CrossRefGoogle Scholar
Isotopic Studies of Ferroan Anorthosite 62236: a Young Lunar Crustal Rock from a light Rare-Earth-Element-Depleted Source” by Borg, Lars, Norman, Marc, Nyquist, Larry, Bogard, Don, Snyder, Greg, Taylor, Larry & Lindstrom, Marilyn, 1999, Geochimica et Cosmochimica Acta, 63, 2679;CrossRefGoogle Scholar
An Ancient Sm–Nd Age for a Ferroan Noritic Anorthosite Clast from Lunar Breccia 67016” by Alibert, Chantal, Norman, Marc D. & McCulloch, Malcolm T., 1994, Geochimica et Cosmochimica Acta, 58, 2921;CrossRefGoogle Scholar
The Age of Ferroan Anorthosite 60025: Oldest Crust on a Young Moon?” by Carlson, R. W. & Lugmair, G. W., 1988, Earth and Planetary Science Letters, 90, 119;CrossRefGoogle Scholar
Evidence from Detrital Zircons for the Existence of Continental Crust and Oceans on the Earth 4.4 Gyr Ago” by Wilde, Simon A., Valley, John W., Peck, William H. & Graham, Colin M., 2001, Nature, 409, 175.CrossRefGoogle ScholarPubMed
Argon-40/Argon-39 Age Spectra of Apollo 17 Highlands Breccia Samples by Laser Step Heating and the Age of the Serenitatis Basin” by Dalrymple, G. B. & Ryder, G., 1996, Journal of Geophysical Research, 101, 26069.CrossRefGoogle Scholar
Priscoan (4.00–4.03 Ga) Orthogneisses from Northwestern Canada” by Bowring, Samuel A. & Williams, Ian S., 1999, Contributions to Mineralogy and Petrology, 134, 3;CrossRefGoogle Scholar
The Origin of Decoupled Hf–Nd Isotope Compositions in Eoarchean Rocks from Southern West Greenland” by Hoffmann, J. Elis, Münker, Carsten, Polat, Ali, Rosing, Minik T. & Schulz, Toni, 2011, Geochimica et Cosmochimica Acta, 75, 810.CrossRefGoogle Scholar
Neodymium-142 Evidence for Hadean Mafic Crust” by O’Neil, Jonathan, Carlson, Richard W., Francis, Don & Stevenson, Ross K., 2008, Science, 321, 1828;CrossRefGoogle ScholarPubMed
Comment on ‘Neodymium-142 Evidence for Hadean Mafic Crust’” by Andreasen, Rasmus & Sharma, Mukul, 2008, Science, 325, 267;CrossRefGoogle Scholar
Response to Comment on ‘Neodymium-142 Evidence for Hadean Mafic Crust’” by O’Neil, Jonathan, Carlson, Richard W., Francis, Don & Stevenson, Ross K., 2008, Science, 325, 267)CrossRefGoogle Scholar
Origin of the Cataclysmic Late Heavy Bombardment Period of the Terrestrial Planets” by Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A., 2005, Nature, 435, 466.CrossRefGoogle ScholarPubMed
The Sculptured Hills of the Taurus Highlands: Implications for the Relative Age of Serenitatis, Basin Chronologies and the Cratering History of the Moon” by Spudis, Paul D., Wilhelms, Don E. & Robinson, Mark S., 2011, Journal of Geophysical Research, 116, E00H03.CrossRefGoogle Scholar
Schultz, and Spudis, , Nature (1983), 302, 233.CrossRef
Cratering in the Earth–Moon System: Consequences for Age Determination by Crater Counting” by Neukum, G., König, B., Fechtig, H. & Storzer, D., 1975, Proceedings of Lunar Science Conference, 6, 2597;Google Scholar
“The Comparison of Size–Frequency Distributions of Impact Craters and Asteroids and the Planetary Cratering Rate” by Ivanov, B. A., Neukum, G., Bottke, W. F. & Hartmann, W. K., in Asteroids III, eds. Bottke, W. F., Cellino, A., Paolicchi, P. & Binzel, R. P., 2002, Tucson: University of Arizona Press, 89;Google Scholar
Lunar Mare Basalt Flow Units: Thicknesses Determined from Crater Size-Frequency Distributions” by Hiesinger, H., Head, J. W., Wolf, U., Jaumann, R. & Neukum, G., 2002, Journal of Geophysical Research, 29, 89.Google Scholar
New Observational Evidence of Nonuniform Cratering of the Moon” by Kreslavsky, M. A., Werner, S. C., Head, J. W. & Fassett, C. I., 2012, Lunar and Planetary Science Conference, 43, 1193;Google Scholar
Nonuniform Cratering of the Moon and a Revised Crater Chronology of the Inner Solar System” by Le Feuvre, Mathieu & Wieczorek, Mark A., 2011, Icarus, 214, 1.CrossRefGoogle Scholar
Chronology and Sources of Lunar Impact Bombardment” by Ćuk, Matija, 2012, Icarus, 218, 69.CrossRefGoogle Scholar
Gomes, R., Levison, H. F., Tsigania, K., and Morbidelli, A., “Origin of the Cataclysmic Late Heavy Bombardment Period of the Terrestrial Planets,” Nature (2005), 435, 466.CrossRefGoogle ScholarPubMed
Lunar Impact Basins: Stratigraphy, Sequence and Ages from superposed Impact Crater Populations Measured from Lunar Orbiter Laser Altimeter (LOLA) Data” by Fassett, C. I., Head, J. W., Kadish, S. J., Mazarico, E., Neumann, G. A., Smith, D. E. & Zuber, M. T., 2012, Journal of Geophysical Research, 117, E00H006.CrossRefGoogle Scholar
The Formation of Ice Giants in a Packed Oligarchy: Instability and Aftermath” by Ford, Eric B. & Chiang, Eustace, 2007, Astrophysical Journal, 661, 602.CrossRefGoogle Scholar
Characteristics, Affinities and Ages of Volcanic Deposits Associated with the Orientale Basin from Chandrayaan-1 Moon Mineralogy Mapper (M3) Data: Mare Stratigraphy” by Whitten, J., Head, J., Staid, M., Pieters, C., Mustard, J., Taylor, L., McCord, T., Isaacson, P., Klima, R., Nettles, J. & the M3 Team, Lunar and Planetary Science Conference, 2009, 1841.Google Scholar
Apollo 12 Technical Debrief, December 1, 1969, Houston: NASA Manned Space Center, 10–42.)
Specific Surface Area as a Maturity Index of Lunar Fines” by Gammage, R. B. & Holmes, H. F., 1975, Earth and Planetary Science Letters, 27, 424.CrossRefGoogle Scholar
Density and Packing in an Aggregate of Mixed Spheres” by Hudson, Douglas Rennie, 1949, Journal of Applied Physics, 20, 154.CrossRefGoogle Scholar
Measurement of Particle Size Distribution in Portland Cement Powder: Analysis of ASTM Round Robin Studies” by Ferraris, Chiara F., Hackley, Vincent A. & Avilés, Ana Ivelisse, 2004, Cement, Concrete and Aggregates, 26, 11920.CrossRefGoogle Scholar
Thickness Determinations of the Lunar Surface Layer from Lunar Impact Craters” by Quaide, W. L. & Oberbeck, V. R., 1968, Journal of Geophysical Research, 73, 5247;CrossRefGoogle Scholar
Constraints on the Depth and Variability of the Lunar Regolith” by Wilcox, B. B., Robinson, M. S., Thomas, P. C. & Hawke, B. R., 2005, Meteoritics and Planetary Science, 40, 695.CrossRefGoogle Scholar
Regolith Thickness over the Lunar Nearside: Results from Earth-based 70-cm Arecibo Radar Observations” by Fa, Wenzhe & Wieczorek, Mark A., 2012, Icarus, 218, 771;CrossRefGoogle Scholar
A primary Analysis of Microwave Brightness Temperature of Lunar Surface from Chang’e 1 Multi-channel Radiometer Observation and Inversion of Regolith Layer Thickness” by Fa, W. & Jin, Y.-Q., 2010, Icarus, 207, 605.CrossRefGoogle Scholar
Local Lunar Topography from the Apollo 17 ALSE Radar Imagery and Altimetry” by Elachi, C., Kobrick, M., Roth, L., Tiernan, M. & Brown, Jr. W. E., 1976, Moon, 15, 119;CrossRefGoogle Scholar
The Lunar Radar Sounder (LRS) Onboard the KAGUYA (SELENE) Spacecraft” by Ono, T., et al., 2010, Space Science Reviews, 154, 145.CrossRefGoogle Scholar
Lunar Regional Dark Mantle Deposits: Geologic, Multispectral and Modeling Studies” by Weitz, Catherine M., Head, James W. III & Pieters, Carle M., 1998, Journal for Geophysical Research, 103, 22725.CrossRefGoogle Scholar
Production of Oxygen from Lunar Ilmenite” by Zhao, Y. & Shadman, F., 1991, Industrial and Engineering Chemical Research, 30, 2080.CrossRefGoogle Scholar
Trapped Solar Wind Gases in Lunar Fines and A Breccia” by Eberhardt, P., Geiss, J., Graf, H., Grögler, N., Mendia, M. D., Morgeli, M., Schwaller, H. & Stettler, A., 1972, Lunar Science Conference, 2, 1821;Google Scholar
Gas Ion Probe Analysis of Helium Profiles in Individual Lunar Soil Particles” by Mueller, H. W., Jordan, J. L., Kalbitzer, S., Kiko, J. & Kirsten, T., 1976, Proceedings of 7th Lunar Science Conference, 2, 937;Google Scholar
“Mapping Pyroclastic Deposits and Other Lunar Features for Solar Wind Implanted Helium” by Jordon, J. L., in Workshop on Lunar Volcanic Glasses: Scientific and Resource Potential, eds. Delano, J. W. & Heiken, G. H., 1989, Houston: Lunar and Planetary Inst., 43;Google Scholar
“Hydrogen, Helium and other Solar-Wind Components in Lunar Soil: Abundances and Predictions” by Taylor, L. A., in Engineering, Construction and Operations in Space II: Proceedings of Space ‘90, 1990, New York: American Society of Civil Engineers, 68.Google Scholar
“A Teleoperated Robotic Field Geologist” by Taylor, G. Jeffrey & Spudis, Paul D., in Engineering, Construction and Operations in Space II: Proceedings of Space’90, 1990, New York: American Society of Civil Engineers, 246)Google Scholar
“Intrepid: Lunar Roving Prospector Providing Ground Truth and Enabling Future Exploration” by Robinson, M. S., Lawrence, S. J., Speyerer, E. J., & Stopar, J., in Lunar Exploration Analysis Group Meeting, 2011, Houston: Lunar and Planetary Institute, 2042.Google Scholar
Interplanetary Correlation of Geologic Time” by Shoemaker, E. M., Hackman, R. J. & Eggleton, R. E., 1963, Advances in Astronautical Sciences, 8, 70)Google Scholar
Apollo 12 Lunar Module Exhaust Plume Impingement on Lunar Surveyor III” by Immer, Christopher, Metzger, Philip, Hintze, Paul E., Nick, Andrew & Horan, Ryan, 2011, Icarus, 211, 1089.CrossRefGoogle Scholar
“Sintering Bricks on the Moon” by Allen, Carleton C., Graf, John C. & McKay, David S., in Engineering, Construction and Operations in Space IV, 1994, New York: American Society of Civil Engineers, 1220.Google Scholar
Blocking of the Water-Lunar Fines Reaction by Air and Water Concentration Effects” by Gammage, R. B. & Holmes, H. F., 1975, 6th Lunar Science Conference, 3, 3305Google Scholar
“Lunar and Martian Resource Utilization – Cement and Concrete” by Lin, T. D., Bhattacharja, S., Powers-Couche, L., Skaar, S. B., Horiguchi, T., Saeki, N., Munaf, D., Peng, Y. N. & Casanova, I., in Workshop on Using In Situ Resources for Construction of Planetary Outposts, 1998, Houston: Lunar and Planetary Institute, 12;Google Scholar
“Physical Properties of Concrete Made with Apollo 16 Lunar Soil Sample” by Lin, T. D., Love, H. & Stark, D., in Space Manufacturing 6, 1987, American Institute of Aeronautics and Astronautics, Houston: Lunar and Planetary Institute, 361.Google Scholar
“Lunar Concrete for Construction” by Cullingford, Hatice S. & Keller, M. Dean, in 2nd Conference on Lunar Bases and Space Activities of the 21st Century, ed. Mendell, W. W., 1992, Houston: NASA Conference Publication 3166, 497.Google Scholar
Mixing of the Lunar Regolith” by Gault, D. E., Hörz, F., Brownlee, D. E. & Hartung, J. B., 1974, 5th Proceedings of Lunar Science Conference, 3, 2365Google Scholar
Preservation Potential of Implanted Solar Wind Volatiles in Lunar Paleoregolith Deposits Buried by Lava Flows” by Fagents, Sarah A., Rumpf, M. Elise, Crawford, Ian A. & Joy, Katherine H., 2010, Icarus, 207, 595.CrossRefGoogle Scholar
Exploring Volatile Deposition in Lunar Regolith” by Alford, J. A., Hodges, A. R., Heggy, E. & Crotts, A., 2012, Lunar and Planetary Science Conference, 43, 2938.Google Scholar
On the Survivability and Detectability of Terrestrial Meteorites on the Moon” by Crawford, I., Baldwin, E., Taylor, E., Bailey, J. & Tsembelis, K., 2008, Astrobiology, 8, 242;CrossRefGoogle Scholar
The Moon: A Repository for Ancient Planetary Samples” by Armstrong, John C., Wells, Llyd E., Kress, Monika & Gonzalez, Guillermo, 2002, The Moon Beyond 2002: Next Steps in Lunar Science and Exploration, 2.Google Scholar
Searching for Alien Artifacts on the Moon” by Davies, P. C. W. & Wagner, R. V., 2011, Acta Astronautica, ;Google Scholar
Earth–Moon System as a Collector of Alien Artifacts” by Arkhipov, A. V., 1998, Journal of British Interplanetary Society, 51, 181.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Moons Past
  • Arlin Crotts, Columbia University, New York
  • Book: The New Moon
  • Online publication: 05 September 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139045384.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Moons Past
  • Arlin Crotts, Columbia University, New York
  • Book: The New Moon
  • Online publication: 05 September 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139045384.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Moons Past
  • Arlin Crotts, Columbia University, New York
  • Book: The New Moon
  • Online publication: 05 September 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139045384.007
Available formats
×